


Architecting 
Enterprise 
Blockchain 
Solutions



Architecting 
Enterprise 
Blockchain 
Solutions
Joseph Holbrook



Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-55769-2
ISBN: 978-1-119-55768-5 (ebk)
ISBN: 978-1-119-55773-9 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechani-
cal, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright 
Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the 
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, 
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy 
or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness 
for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained 
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, 
accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be 
sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or website is referred 
to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the 
information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet 
websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 
762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions 
of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included 
in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley 
products, visit www.wiley.com.

Library of Congress Control Number: 2019946697

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United 
States and other countries, and may not be used without written permission. All other trademarks are the property of their respective own-
ers. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.



  This book is dedicated to my soulmate and wife, 
Frida, my daughter Destiny, and my stepson Lenin 
for their full support. The effort required for the 
writing and completion of this book, of course, took 
hours away from them.



About the Author
Joe Holbrook has been in the IT field since 1993, when he was exposed to several HPUX systems 
onboard  USS John F. Kennedy (CV-67). He migrated from the UNIX networking world to 
storage area networking (SAN) and then on to enterprise cloud/virtualization and blockchain 
architectures. He has worked for numerous companies such as HDS, 3PAR Data, Brocade, 
Dimension Data, EMC, Northrup Grumman, ViON, Ibasis.net, Chematch.com, SAIC, and 
Siemens Nixdorf.

Joe has also been a contract technical trainer for HPE (3PAR), Hitachi Data Systems, Training 
Associates, ITPrenuers, and Global Knowledge. Joe is a widely published course author on 
outlets such as LinkedIn Learning, Pearson Safari, INE.com, and Udemy.com. He has been a 
subject-matter expert for the CompTIA Cloud Essentials and Cloud Plus exams and a 2018 
CompTIA Partner Conference trainer for the Cloud Plus TTT. Currently Joe is the owner of a new 
upstart learning platform called MyBlockChainExperts and is based in Jacksonville, Florida.

Joe is also a Certified Bitcoin Professional (CBP), Certified Blockchain Solutions Architect, and 
avid blockchain and cryptocurrency geek. He holds industry-leading certifications from Amazon 
Web Services, Google Cloud, Brocade, Hitachi Data Systems, EMC, VMware, CompTIA, HP 
3PAR ASE, Cloud Credential Council, Palo Alto Networks, and numerous other organizations.

While in the Navy and attending Central Texas University, Joe received an AA degree.  
He received a certificate in total quality management from the United States International 
University (USIU) in San Diego. He received several certificates in information systems, project 
management, intranet development, and a BSIS from the University of Massachusetts – Lowell.

In 2007, Joe was given the AFCEA NOVA SuperNOVA award for outstanding event leader-
ship and was awarded the Brocade Excellence Award in 2008 for his Brocade Services Partner 
Training Program implementation.

About the Technical Editor
Greg Phillips is an On-prem Datacenter and Cloud Native Infrastructure Architect with over 25 
years of experience in distributed systems and high-volume, multi-platform environments. 
Environments worked in have spanned DOD, commercial satellite communications, federal 
government, financial, manufacturing, transportation, service provider and other commercial 
sector Fortune 500 firms. He became interested in and got involved with BTC and Blockchain 
technology in 2013 and is currently researching Blockchain/DLT use cases for cable MSOs and 
content providers in the media/entertainment sector. Greg is also the founder of Think IT Data 
Solutions, which, in addition to providing managed IT services, provides technology-led 
business transformation solutions enabling fully autonomous closed-loop operations for enter-
prise clients.

About the Technical Proofreader
Kunal Mittal is an Entrepreneur and serves on the Board of Advisors for multiple technology 
startups. Advisory roles and CTO positions is what he aspires to continue to do at early stage 
startups.”?



viii | About the Author

He is a Technologist with over 20 years of experience working at all size companies, from 
early stage startups to large Enterprises. His strengths are product strategy, technology strategy, 
and execution. He enjoys building high performing teams to create a capacity to Innovate. 
Having lead small teams to large teams of more than 400 people, he has spearheaded all technol-
ogy functions — Product Management, UX, Development, Quality Assurance, Architecture, Data 
Science, Cyber Security, Infrastructure, and Corporate IT.

Kunal’s main experience lies in B2B SaaS, B2C, and building platforms that foster growth by 
creating a network effect between the business and customer.

Along with his wife, Neeta, he started a winery in Paso Robles (Central California) 
named LXV Wine, which won an award for being the 7th best Tasting Experience in the U.S. by 
USA Today.

He is also an instrument rated private pilot with 500+ hours of flying time under my belt.



Acknowledgments
Thank you to Greg Phillips, Chief Technical Office (CTO) of ThinkIt Data Solutions for his advice 
and significant level of technical review of the subject matter. Greg has been my partner on 
numerous projects since our time together in the U.S. Navy.

Thank you to George Levy, Chief Learning Officer (CLO) at Blockchain Institute of 
Technology for his advice in making this book as focused as possible. George is a true blockchain 
visionary and is one of the top voices in the marketplace.

Thank you to Kenyon Brown, Pete Gaughan, John Sleeva, Athiyappan Lalith Kumar and 
Evelyn Wellborn.



Contents at a Glance
Foreword .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxi

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  xxiii

Chapter 1 • Introduction to Blockchain Technologies  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Chapter 2 •  Enterprise Blockchains: Hyperledger, R3 Corda, Quorum,  
and Ethereum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

Chapter 3 • Architecting Your Enterprise Blockchain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69

Chapter 4 • Understanding Enterprise Blockchain Consensus  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117

Chapter 5 • Enterprise Blockchain Sales and Solutions Engineering .  .  .  .  .  .  .  .  .  .  .  .  .  . 137

Chapter 6 • Enterprise Blockchain Economics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163

Chapter 7 • Deploying Your Blockchain on BaaS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183

Chapter 8 • Enterprise Blockchain Use Cases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 241

Chapter 9 •  Blockchain Governance, Risk, and Compliance (GRC),  
Privacy, and Legal Concerns .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   257

Chapter 10 • Blockchain Development   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279

Chapter 11 • Blockchain Security and Threat Landscape  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 323

Chapter 12 • Blockchain Marketplace Outlook  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 349

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 359



Contents
Foreword .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxi

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxiii

Chapter 1 • Introduction to Blockchain Technologies .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
What Is a Blockchain?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

My Approach to the Definition .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
Technical Audience  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
Business Audience  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
Legal Audience  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Three Definitions of Blockchain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

History of Blockchains .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5
Blockchain vs . Traditional Database  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

Distribution of Trust  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Consensus and Trust .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Summary of Differences Between Ledgers and Traditional Databases  .  .  .  .  .  .  .  .  .  .  . 10
Cap Theorem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12

Common Properties of Permissionless Blockchains  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
Why the Blockchain Is Considered Revolutionary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
Blockchain Principles .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15

Trust or Trustless  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
Transparency and Blockchain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18

Blockchain Transaction Basics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
Consensus  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
Blocks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20

Types of Blockchains  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
Public, Private, and Hybrid Blockchains .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

Chapter 2 • Enterprise Blockchains: Hyperledger, R3 Corda,  
Quorum, and Ethereum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .29
Comparing Enterprise Blockchains  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
Introducing the Hyperledger Project .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31

Hyperledger Frameworks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32
Introducing Hyperledger Fabric  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35

Hyperledger Fabric Ledger  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37
Hyperledger Fabric Consensus .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
Hyperledger Fabric Transactions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
Hyperledger Fabric Nodes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40
Hyperledger Fabric Business Networks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40
Hyperledger Fabric Chaincode (Smart Contracts) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41



xIv | Contents

Hyperledger Fabric Development Tools  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Hyperledger Fabric Governance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43

Introducing R3 Corda  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
R3 Corda Blockchain Fundamentals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
R3 Corda Network  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
R3 Corda Ledger  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47
R3 Corda Consensus .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48
R3 Corda Nodes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
R3 Corda States  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
R3 Corda Transactions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
R3 Corda Client Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50
R3 Corda Smart Contracts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
R3 Corda Development Tools  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
R3 Corda Governance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53

Introducing Quorum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54
Quorum Blockchain Fundamentals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
Quorum Ledger .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56
Quorum Consensus  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56
Quorum Smart Contracts .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56
Quorum Tools and Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
Quorum Governance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58

Introducing Ethereum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
Ethereum Blockchain Fundamentals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
Ethereum Ledger .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61
Ethereum Node EVM  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61
Ethereum Client Apps  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63
Ethereum Transactions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Ethereum Smart Contracts .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Ethereum Wallets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
Ethereum Tools and Utilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
Ethereum Governance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68

Chapter 3 • Architecting Your Enterprise Blockchain .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .69
Blockchain Technology Focus Areas  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69

Blockchain Success Areas .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 70
Blockchain Compliance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

Architecting a Blockchain Solution  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71
Blockchain Design Workflow  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72
Use Case Potential .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72

Blockchain Structure and Components .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77
Blockchain Structure .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 77
Blockchain Core Components  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79

Enterprise Blockchain Architectures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
TOGAF Domains .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
What, Who, and How of Enterprise Architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82



Contents | xv

Tenets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82
Blockchain Design .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
Enterprise Blockchain Adoption Challenges  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
Risk Management  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
Blockchain as a Hammer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85

Enterprise Blockchain Design Principles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85
Enterprise Blockchain Design Requirements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86
Other Concerns—Deployment Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90

Hyperledger Fabric  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90
Hyperledger Fabric’s Main Selling Points .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Hyperledger Fabric’s Blockchain Design Considerations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Hyperledger Fabric’s Advantages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Hyperledger Fabric’s Design Example Architectures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96

R3 Corda  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
R3 Corda’s Main Selling Points .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
R3 Corda’s Design Considerations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98
R3 Corda’s Design Example Architectures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102

Ethereum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
Ethereum’s Selling Points  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
Ethereum’s Blockchain Design  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 105
Ethereum’s Design Example Architectures .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107

Quorum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
Quorum’s Selling Points  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
Quorum’s Blockchain Design Principles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
Quorum’s Design Example Architectures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114

Chapter 4 • Understanding Enterprise Blockchain Consensus  .  .  .  .  .  .  .  .  .117
Blockchain Consensus Methods from a Historical Perspective  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118

The Importance of Consensus .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118
Byzantine Generals Problem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119
Byzantine Fault Tolerance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121

Comparing Enterprise Blockchain Consensus Methods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
Proof-of-Work Consensus  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122
Proof-of-Stake Consensus  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124
Comparing Proof of Work and Proof of Stake  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125
Proof of Elapsed Time  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126
Delegated Proof of Stake  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128
Delegated Byzantine Fault Tolerance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129
Practical Byzantine Fault Tolerance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
Istanbul Byzantine Fault Tolerance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
Raft Consensus  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 131
Directed Acyclic Graph  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132

Blockchain Consensus Evaluation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134
Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135



xvI | Contents

Chapter 5 • Enterprise Blockchain Sales and Solutions Engineering  .  .  .  .137
Enterprise Blockchain Sales Cycle  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
Blockchain Roles (Stakeholders)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 139
IT-Based Sales Cycles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 141

Presales Tasks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
Selling Enterprise Blockchain Solutions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152
Sales Engineering Success  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 162

Chapter 6 • Enterprise Blockchain Economics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .163
Introduction to Enterprise Blockchain Economics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163

Enterprise Ecommerce Business Models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163
Value Creation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
Blockchain Payment Gateways .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164
Stablecoins  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165

Blockchain Funding and Costs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
CAPEX and OPEX .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Cost Considerations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 168

Enterprise Blockchain Cost Models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173
Return on Investment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174
Total Cost of Ownership  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 176
ROI vs . TCO .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177

Potential Cost Efficiencies  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177
Reducing Burdened Labor Costs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177
Using OPEX over CAPEX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
Lower Transaction Costs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
Costless Verification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
Intermediary Roles and Blockchain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181

Chapter 7 • Deploying Your Blockchain on BaaS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .183
Blockchain as a Service Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183

Why Use a Blockchain as a Service? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
Benefits of Using a Blockchain as a Service .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
Negatives of Using a Blockchain as a Service .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
Blockchain as a Service for Sales Teams .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186
Blockchain as a Service Providers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186

Amazon Web Services Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187
AWS Blockchain templates Deployment High-Level Steps  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189
Understanding AWS Regions and Availability Zones .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189
Deploying Hyperledger on AWS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191
Deploying AWS Managed Blockchain .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221

IBM Cloud Blockchain Platforms .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231
Blockchain Platform 2 .0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239



Contents | xvII

Chapter 8 • Enterprise Blockchain Use Cases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .241
Merits of Blockchain Acceptance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 241

Technical Merits of Blockchain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242
Business Merits of Blockchain .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243
Common Elements of Blockchain Adoption .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 244

Financial Sector Use Cases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 244
Cross-Border Payments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 245
Know Your Customer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247
Peer-to-Peer Lending  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 248
Security Tokenization  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 248

Logistics Use Cases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
Supply Chain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250
Internet of Things  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250
Farm to Table  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251

Government Use Cases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 252
City/State of Dubai .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 252
Country of Georgia  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 252

Healthcare Use Cases .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 253
Other Potential Use Cases .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 254

Zero-Knowledge Proofs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 254
Social Impact, Charity, and Fundraising  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
Distributed Cloud Storage .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
Identity Management  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256

Chapter 9 • Blockchain Governance, Risk, and Compliance  
(GRC), Privacy, and Legal Concerns .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .257
Governance, Risk, and Compliance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257

Compliance Benefits  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258
Regulatory Oversight  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259
Common Compliance Requirements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 261

Smart Contract Legal Concerns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 271
Smart Contract Enforcement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 272
Smart Contract Adaptability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 273
Legal Jurisdiction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 274
Liability of Services .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 274

Financial Sector Compliance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
Handling Customer Data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
Intellectual Property  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275
Auditing and Logging  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 276

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277

Chapter 10 • Blockchain Development  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .279
Common Programming Languages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279

Most Common Development Languages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 280
Less Widely Used Development Languages .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 282
Summary of Blockchain Platforms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 283



xvIII | Contents

Ethereum Development  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 284
Smart Contracts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 284
Ethereum Ecosystem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 288
Ethereum Networks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 291
Ethereum Nodes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 295
Solidity Programming Language  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 296
Ethereum APIs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 297
Ethereum Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 299

Hyperledger Development  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 303
Chaincode .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 303
Hyperledger Fabric Consensus Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 305
Hyperledger Fabric Database Options  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 305
Client Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 306
Fabric REST Services .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 307
Service Discovery  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 307
Hyperledger Composer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 307

R3 Corda Development  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 310
Corda Consensus Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 311
CorDapps  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 311
Corda Network and Nodes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 312
Corda Service Hub  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 312
Corda Doorman .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
Corda Flows .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
Client RPC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
Oracles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
Corda DemoBench  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313

Quorum Development .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 315
Quorum vs . Ethereum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 315
Quorum Cakeshop  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 315

Blockchain Performance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 316
Permission or Permissionless Performance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 318
Performance Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 319

Blockchain Integration and Interoperability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 320
Data Exchange Methods  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 321
Hash Timed Locks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 321
Relays and Gateways  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 321

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 322

Chapter 11 • Blockchain Security and Threat Landscape  .  .  .  .  .  .  .  .  .  .  .  .  .  .323
Blockchain Security Basics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 323

Confidentiality, Integrity, and Availability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 324
Blockchain Best Practices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 325
Blockchain Security Audits  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 327
Blockchain Security Assumptions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 328
Blockchain Cryptography  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 328



Contents | xIx

Blockchain Risks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 332
Risk Assessment  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 332
Risk Mitigation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 333

Blockchain Threat Landscape .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
51 Percent Attacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
Phishing Attacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 336
DDOS Attacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 336
DNS Hijacking Attacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 337
Eclipse Attacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 337
Insider Attacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 338
Replay Attacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 338
Routing Attacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339
Sybil Attacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339

Smart Contract Security .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339
Smart Contract Legal Prose  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 339
Smart Contract Vulnerabilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 340

Blockchain-Specific Features .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 340
Ethereum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 341
Hyperledger Fabric .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 343
R3 Corda Blockchain .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 344
Quorum  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 345

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 347

Chapter 12 • Blockchain Marketplace Outlook  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .349
Technology Investments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 349

Investments in Blockchain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 350
Blockchain Market Patents  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 350
Blockchain Market Growth  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 352
Complementary and Adverse Blockchain Acceptance Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 352
Blockchain Expertise Demand  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 353
Blockchain Market Expertise Expansion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 353

Blockchain Certifications .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 354
Blockchain Institute of Technology  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 355
Blockchain Council  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 355
Blockchain Training Alliance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 356

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 357

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 359



     Foreword   
    I remember how excited I was the moment I first found out that Joseph Holbrook would be

writing a book called Architecting Enterprise Blockchain Solutions  . 

 As chief learning officer at Blockchain Institute of Technology, I have had the opportunity to

work and collaborate with Joseph over the years in numerous blockchain-related opportunities,

and I have always found him to be a truly professional master on the topic, with an

encyclopedia- like mind on the subject.

 Beyond that, Joseph is a talented instructor who not only cares about delivering a clear 

message whenever he is sharing his knowledge, but he always focuses on delivering valuable

lessons and actionable steps that will benefit the people he is sharing with.

 So, knowing that Joseph was writing a book capturing his expertise on the important subject

of architecting enterprise blockchain solutions, I knew I simply had to get it ASAP and add it to

my library of indispensable blockchain-focused books.

 During the time that I have known Joseph, I have learned much from our exchanges, and I

highly admire his level of expertise. I have seen his passion and commitment to understanding

and implementing enterprise-level blockchain technology projects, and as a result, he has become

one of the most esteemed and authoritative expert contacts I reach out to when it comes to the

topic of enterprise blockchain solutions. In this book, Joseph has delivered the most efficient and

straightforward way to learn the knowledge he has acquired and applied in enterprise block-

chain solutions.

 As you work your way through the book, Joseph masterfully leads you through a clear 

learning path. He begins with an introduction into blockchain technologies, followed by an

analysis of leading enterprise blockchains. He then continues by progressively adding new layers

of knowledge, with each new chapter building on the previous one in a highly coherent and

valuable guide. The book is filled with detailed explanations of many other essential topics

including blockchain programming basics, as well as how blockchain can be implemented in

multiple different enterprise-level scenarios. He has even included a truly visionary chapter with

his insights on where the future of blockchain is headed.

 Studying the book contents and seeing how Joseph has been able to both capture and explain 

what can otherwise be the complex topic of architecting enterprise blockchain solutions, I am

pleased to say that this is by far the best guide I have found on the subject. It is an important and

necessary book that should be required reading and on every bookshelf of anyone working with

blockchain technology. 

 I feel honored to have the opportunity to write the foreword to this much-needed book by 

Joseph Holbrook, which I know will help open many eyes and minds around the world to all the

opportunities that are possible through the use of blockchain in enterprise-level projects. Beyond

that, I know it can help you gain the knowledge you will need to successfully implement

blockchain in your own projects.

 There is a wealth of knowledge about blockchain technology waiting for you in this book, and 

I wish you ever-growing success learning and applying it.

 George Levy, CSBCP, CBP

 Chief Learning Officer

 Blockchain Institute of Technology

  https://BlockchainInstitute.com

 Miami, Florida, 2019



     Introduction

    Blockchain is really about providing value to the enterprise.  Architecting Enterprise Blockchain  

Solutions  provides expert insight into enterprise blockchain understanding and direction for

enterprise-focused sales team members who are both technical and nontechnical, systems

engineers, application developers, and IT executives.

 The competitive nature of the IT industry is constantly providing paths for enterprises, some 

of which provide value while others are mere distractions. This book aims to not only address

the differences between technology distractions around blockchain technology but provide

insight into why the technology is so disruptive to the “status quo” in sectors such as financial,

government, and logistics.

 As enterprise-focused professionals, we should focus on the opportunities that the disruptive 

nature of blockchain can provide, which entails everything from providing your customers direct

value through cost savings to ensuring compliance requirements are met to providing a competi-

tive edge. Blockchains are driving new business models in some sectors faster than others.

 This book is not about cryptocurrency and how you can become rich trading Bitcoin or Dash. 

It is an enterprise-focused book on blockchain technology. The main focus of the book is on

Hyperledger, R3 Corda, Quorum, Ripple, and Ethereum. A secondary focus is on other technolo-

gies that provide value as well such as off-chains like Blockstream or smaller blockchain projects

such as Lisk or NEO that enterprises may be considering. The reality is that blockchains that

utilize smart contracts provide immense value to enterprises when properly developed, planned,

and implemented. I also cover in detail how to use IBM Blockchain Platform As A Service and

AWS Blockchain Templates to drive your customers’ proof of concepts (PoCs) and production

blockchains.

 The topics covered will give you a solid grasp of blockchain technology, blockchain architec-

ture, blockchain development, blockchain security, blockchain roles, and demand for blockchain

expertise.

 So, whether you ’ re just learning about what blockchain technology is or you ’ re deeply 

involved in a PoC for a Fortune 500 enterprise, learning about the disruptive nature of block-

chain technology is the right move. Not only should you understand that blockchain technology

is so disruptive, but that it is also becoming a competitive necessity. Your competitors are likely

investing in blockchain training, blockchain professional services practices, blockchain PoCs, and

even enterprise implementations.

 To wrap up, blockchain is the locomotive going down the tracks; either you can jump in front 

of the train or you can jump on board. The question is, do you want to be enabled in blockchain

or do you prefer to let your competition deal with this? The competitive nature of business is

clearly driving the hundreds of millions in investments in the blockchain space, and this is

showing no sign of slowing down. Contrary to what the bank CEOs say, blockchain is here to

stay and will continue to disrupt their businesses. 



XXIV | INTRODUCTION

  Why You Should Read This Book 
 This book aims to be a reference as well as an inspiration to all IT-focused presales architects, 

systems engineers, application developers, sales executives, and even IT executives who are 

trying to understand where blockchain fits into their customer base or their own enterprises.

Sales and professional services are all about driving revenue and providing value to your

customer base. Blockchain technology, when correctly positioned, can do just this.

 Application developers who are focused on understanding blockchain and how the technol-

ogy translates into an application will benefit.

 IT executives or IT analysts will certainly benefit from this book because they will understand

how both the technical aspects and the business aspects of blockchain can drive value in their

enterprises.

 As a former presales engineer who has been involved in well over $100 million in docu-

mented transactions for companies such as 3PAR Data, HDS Federal (ViON), and Brocade

Communications, I feel that this target group really needs to understand blockchain. The presales

audience in some market segments needs to start envisioning where their customer base will go

around this disruptive technology. 

 This book was written to address both the technical aspects of blockchain such as how to

design and implement a blockchain and also the business aspects that the target audience needs

to know such as competitive analysis, ROI/TCO, proof of concepts, and providing value to your

customer base or your enterprise. 

  How This Book Is Structured 
Architecting Enterprise Blockchain Solutions comprises the following chapters:

Chapter     1, “Introduction to Blockchain Technologies,”  covers the basics of blockchain

technology, the history of the blockchain, how blockchain compares to other technology plat-

forms, how blockchains are deployed for enterprises, blockchain transactions and how they

provide value, and why the blockchain is considered revolutionary.

Chapter     2, “Enterprise Blockchains: Hyperledger, R3 Corda, Quorum, and Ethereum,”

covers enterprise blockchain specifically focused on the technical merits of the enterprise

blockchain. The chapter also covers where the blockchain fits into the enterprise. Areas of focus

will be around defining enterprise blockchains on Hyperledger, R3 Corda, Quorum,

and Ethereum.

Chapter     3, “Architecting Your Enterprise Blockchain,”  covers the use cases, best practices, 

integration, scalability, and security design considerations for each of the enterprise blockchains.

The chapter focuses on architecting Hyperledger Fabric, R3 Corda, Quorum, and Ethereum

blockchains and will provide several use cases for deploying the enterprise blockchains.

Chapter     4, “Understanding Enterprise Blockchain Consensus,”  covers the most common

consensus methods used for blockchains and distributed ledgers. The main focus of the chapter

will be on enterprise blockchains such in the Hyperledger Framework, R3 Corda, Quorum, and

Ethereum. We will also compare and contrast Bitcoin and Ethereum. From a historical perspec-

tive, it is important to understand how Bitcoin works and how the Bitcoin blockchain compares

to other blockchains such as enterprise blockchains.

Chapter     5, “Enterprise Blockchain Sales and Solutions Engineering,”  details selling 

blockchain solutions and services and dives into requirements gathering and identifying use



INTRODUCTION | XXV

cases for enterprise blockchains. The chapter provides a technical presales perspective on how to

sell blockchain services and hardware. The chapter also covers conceptual and nonconceptual

patterns and will cover the routine presales tasks such as RFPs, demos, whiteboards, readiness

assessments, and proof of concepts. We will also review requirements gathering and establishing

a use case for blockchain solutions.

Chapter     6, “Enterprise Blockchain Economics,”  covers the opportunities around blockchains

and distributed ledgers. The chapter provides significant insight into opportunities around cost

control, cost reduction, and cost avoidance around customer use cases. We will discuss how

blockchains and distributed ledgers can facilitate impressive total cost of ownership (TCO)

scenarios and clearly improve return on investment (ROI). The chapter is focused on the econom-

ics around blockchains.

Chapter     7, “Deploying Your Blockchain on BaaS,”  covers blockchain as a service from both a

use case and implementation perspective. The first part of the chapter gives an overview of 

blockchain as a service market and serves as a concise guide of current BaaS platforms with the

main benefits, features, and use cases they provide. I will also discuss how to use a BaaS for

proof of concepts and demos, especially for presales-focused readers. Then the second part of the 

chapter is more technical and covers actually deploying your blockchain on a BaaS. I will walk

you through deploying a blockchain on Amazon Web Services (AWS) and IBM Cloud.

Chapter     8, “Enterprise Blockchain Use Cases,”  covers some of the potential focus areas of 

enterprise blockchain use cases that can provide value to not only the organization but also their

suppliers, customers, and partners. The chapter covers a few of the use cases that have been

announced, along with their merits.

Chapter     9, “Blockchain Governance, Risk, and Compliance ( GRC ), Privacy, and Legal

Concerns.,”  covers the various challenges around blockchain adoption that focus on the compli-

ance, regulatory, and legal concerns. The chapter covers the more common focus areas and also

discusses how blockchains can be an ideal platform for regulatory compliance because they

establish a historically trusted audit trail that can be verified in real time.

Chapter     10, “Blockchain Development,”  covers an overview of blockchain development to 

provide insight into the most common development languages, the best practices, and the 

blockchains they are used for. The chapter will focus mainly on the aspects of development

around Ethereum, Hyperledger, Corda, and Quorum blockchains as well as the development 

languages they are built on such as Solidity, Go, and Jotlin. There will be some examples pro-

vided and, of course, resources to learn more.

Chapter     11, “Blockchain Security and Threat Landscape,”  covers many of the vulnerabilities

that blockchain can be exposed to. The main focus will be on Ethereum, Corda, Hyperledger, and

Quorum and their security concerns. The chapter will also cover what hashing is and how it

plays into your blockchain security as well as what encryption and decryption are with block-

chains. Compliance best practices, risk assessments, and risk mitigation will also be covered in

detail. The chapter will also cover what vulnerabilities are common in blockchain technologies,

discuss fundamental IT best practices as well as smart contracts security concerns, and discuss

issues such as smart contract legal enforcement and legal prose. Lastly, the chapter covers critical

concerns over Ethereum, Corda, Hyperledger, and Quorum that can affect aspects of the block-

chains such as security, privacy, and availability. 

Chapter     12, “Blockchain Marketplace Outlook,”  covers the growing demand that has been

clearly documented by the increased use cases around blockchain technologies and the consist-

ent documented hiring around blockchain expertise. We also look at how blockchain got its start

and where we are now in the technological evolution. We will review a timeline to gain an



XXVI | INTRODUCTION

 understanding of newer technologies that enhance the blockchain marketplace. I will also cover 

aspects of how a sales organization can get enabled and the determined demand for blockchain

requirements. Lastly, I will cover the most common certification and training opportunities to

help grow your business, knowledge base, and enablement toward blockchain. 

  How to Contact the Author 
 If you have questions or comments or would like to find out more about Myblockchainexperts,

please reach out to me on LinkedIn or feel free to email  jholbrook2019@myblockchainexperts.net. 

I will respond promptly to all reasonable requests. Thank you.



Chapter 1

Experts in the technology and financial sectors consider blockchain technology to be revolutionary. 
Your role, as a solutions engineer, presales engineer, or customer-facing sales professional, may 
require knowledge now or later in your career to sell blockchain technology solutions. It is impor-
tant to appreciate how the blockchain is changing the world and how you as a value- added reseller 
(VAR)/vendor/integrator or even a professional services organization can participate in the 
blockchain revolution.

Blockchains are not a product to sell, such as a server, a data storage array, or a network 
router. Blockchains are an “exercise in development” to essentially sell, service, and develop a 
blockchain-focused solution. Blockchains can certainly “enable” products and, as a result it can 
be complex to design, implement, and develop applications. Sometimes legacy applications can 
be extended, which is a common design and integration approach that enterprises should 
consider. Essentially, the technology behind blockchains is simple, but the implementation of the 
technology is where it gets more complex. The goal of this chapter is to break down blockchain 
technology for a sales-driven and technically focused audience.

This chapter discusses the technical merits of blockchain technology in a simple manner with 
direct correlations to how it applies to business.

IN THIS CHAPTER, YOU WILL LEARN THE FOLLOWING ABOUT 
BLOCKCHAINS:

 ◆ What a blockchain is and how to define a blockchain

 ◆ The history of the blockchain and why the history is important to appreciate

 ◆ How blockchains compare to other enterprise technology platforms

 ◆ What blockchain transactions are and how they provide value to the enterprise

 ◆ What a trustless model is compared to a trust model

 ◆ Why the blockchain is considered revolutionary

 ◆ Types of blockchain platforms

Introduction to Blockchain 
Technologies

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



2 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

What Is a Blockchain?
Blockchains have been considered a disruptive technology and the start of what has been coined 
the Web 3.0 generation. Web 3.0 is the next technology front on the Web where many devices are 
interconnected (called the Internet of Things) and used with technologies such as automated 
intelligence. Blockchain technology has significant ramifications for specific industries that 
perform fiduciary or intermediary duties, as you will see in this chapter and through-
out the book.

To be clear, there is a significant amount of confusion about what a blockchain really is, how it 
creates value, and whether it’s a cryptocurrency. Another issue is that blockchains have very 
different use cases; some blockchains are only for cryptocurrencies, while others do not support 
cryptocurrencies.

To gather an understanding of where blockchains and cryptocurrencies came from, it is 
important to appreciate Bitcoin. Bitcoin was the real start of blockchain technology because it 
provided a use case to society. Satoshi Nakamoto, in his 2008 paper “Bitcoin: A Peer-to-Peer 
Electronic Cash System,” created the concept of the blockchain.

Nakamoto’s paper had some detailed approaches to how a blockchain should be purposed for 
the benefit of the masses.

 ◆ A blockchain should be a trustless online payment network that is based on peer-to-peer 
(P2P) versions of electronic cash. The network is a robust node structure that works 
together with little coordination.

 ◆ A blockchain should alleviate the challenge of double spending, where funds can be over 
drafted and therefore lost to the wallet holder.

 ◆ A blockchain should implement the proof-of-work consensus method that rewards nodes 
that participate in the creation blocks (miners). The miners are rewarded for participation 
through an incentive approach, and this encourages miners to be honest.

 ◆ A blockchain should simplify privacy through a trustless system that removes intermedi-
aries and introduces the use of anonymous public keys.

If you read Nakamoto’s paper, you will likely conclude that enterprise permissioned block-
chains were not in Nakamoto’s vision at the time. The realization of this requirement for enter-
prises was not introduced for years after Bitcoin became mainstream.

One of the main challenges in the blockchain arena is how to answer the question, “What is a 
blockchain?” If you ask 10 different blockchain experts, you will get 10 different answers. The 
following are just some of the definitions of what a blockchain is:

 ◆ A blockchain is a shared distributed ledger or data structure.

 ◆ A blockchain is a distributed root of trust on a distributed ledger.

 ◆ A blockchain is a digital ledger in which transactions made in Bitcoin or another crypto-
currency are recorded chronologically and publicly.

 ◆ A blockchain is a type of distributed ledger for maintaining a permanent and tamper- 
proof record of transactional data.

 ◆ Blockchain technology is a distributed ledger technology that uses a distributed, decen-
tralized, shared, and reciprocal ledger, and it may be public or private, permissioned or 
permissionless, and driven by tokenized crypto economics or token-less.



What Is a BlockchaIn? | 3

These definitions all focus on a ledger—specifically, a distributed ledger. A ledger is essentially 
a written or computerized record of all the transactions a business has completed. A distributed 
ledger is a database that is consensually shared and synchronized across networks that are spread 
across multiple sites, institutions, or geographies.

My Approach to the Definition
My approach to defining blockchains is somewhat varied from what other blockchain evangelists 
will provide. I believe that there is no one correct definition that will provide a realistic under-
standing of the blockchain technology to everyone. This book presents several blockchain 
definitions that will vary depending on the audience.

My experience as a presales engineer has taught me that different types of audiences have 
different levels of interest in how technology works. For example, one would not expect an 
attorney to understand information technology the same way a SQL developer would. Both a 
developer and an attorney have different training and for that matter think differently.

My definitions of a blockchain focus on the following audiences:

 ◆ Technical, which includes IT staff, developers, and other technical stakeholders.

 ◆ Business, which are generally IT directors, C-level suite members, and stakeholders of 
financial organizations.

 ◆ Legal, which is generally any compliance-related auditors, corporate counsel, or other 
types of attorneys. Legal would entail government regulators, as well, depending on 
your use case.

Technical Audience
Figure 1.1 shows the first definition of a blockchain from Nakamoto’s 2008 paper. This is a 
definition for a technical audience. Satoshi’s blockchain definition is somewhat complex, but in 
simple terms he is describing the chaining of blocks. From a historical and technical perspective, 
reviewing Nakamoto’s definition should provide insight into his thinking when creating Bitcoin.

Comparing the definition in Figure 1.1 to the other widely used definitions listed earlier, you 
can see that there are significant differences. My point here is that if you’re confused about what 
a blockchain is, you are not alone. The IT industry has done a poor job of providing a standard 
definition.

Business Audience
During discussions with customers (or students), I like to compare blockchains to a hard-copy 
notebook. In essence, a blockchain is a ledger, albeit a distributed data structure and immutable 
ledger. When you write in a notebook, each entry will take up one line. Think of a blockchain as a 
notebook where entries will be written but cannot be erased.

Figure 1.1 
nakamoto’s original 
blockchain definition



4 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

Figure 1.2 compares the properties of a blockchain ledger to a notebook. Comparing a 
blockchain to a notebook is a simplistic approach, of course. A page is compared to a block on a 
blockchain and a page entry is actually a blockchain transaction. Blockchains are about imple-
menting trust.

When it comes to comparing a blockchain to a notebook, it would be accurate to assume that 
not all blockchains are created equal, just as not all notebooks are created equal. For example, 
Ethereum handles transactions somewhat differently from Hyperledger Fabric when ordering 
and validation are considered. When you consider a notebook, you know that some notebooks 
have lines, some do not have lines, and perhaps some have boxes.

Blockchains are all about trust in the technology and removing third parties or intermediaries. 
A blockchain is a globally shared data structure, with a transactional backend database that is 
cryptographically secure. Everyone can read entries in the database just by participating in the 
network. If you want to change something in the database, you have to create a so-called 
transaction, which has to be accepted by all the others in the blockchain. The word transaction 
implies that the change you want to make (assume you want to change two values at the same 
time) is either not done at all or completely applied.

Blockchains are not built from any new transformative technology but are built from a unique 
syncing of three existing technologies: peer-to-peer networks, cryptography, and programs 
(known as smart contracts in the world of blockchains).

Another factor to consider is the cost. Even the cost of implementing these technologies is 
near zero when you consider there are numerous open source projects available. Blockchains are 
not complex technology when viewed holistically, but the complexity can be introduced when 
integrating these systems into the enterprise.

Let’s compare Bitcoin to a blockchain and understand how these terms come together. Bitcoin 
is an unregulated digital currency that uses the blockchain technology as its transaction ledger.  
A blockchain is the platform for most cryptocurrencies and is the “enabler” for Bitcoin; Bitcoin is 
the application (cryptocurrency) that is being “enabled.” Think of it like the blockchain is the 
train track, and Bitcoin is the train. Or, the blockchain is the telephone network, and Bitcoin is 
the phone.

Book = blockchain. Page = block.

Think of the
blockchain as a book
that can be written to

but not erased.

Blockchains are a
revolutionary way of
implementing “trust”

into a platform.

Page entry = 
blockchain
transaction.

Blockchains can be
private or public.

Figure 1.2 
comparing a blockchain 
to a notebook



hIstory of BlockchaIns | 5

At a high level, Bitcoin transactions work as follows. A sender wants to transfer funds to a 
recipient. The transaction is represented online as a block. The block is broadcast to every 
network participant. The network participants review the block, and if approved, it is added to 
the blockchain. Finally, the money moves from the sender to the recipient.

Legal Audience
Lawmakers have even gotten into the arena of defining the term blockchain. A pair of U.S. 
representatives, California Democrat Doris Matsui and Kentucky Republican Brett Guthrie, 
introduced H.R. 6913, “Blockchain Promotion Act of 2018,” to bring stakeholders together to 
develop a common definition of blockchain. The bill also recommends opportunities to promote 
new innovations. See https://www.congress.gov/bill/115th-congress/house-bill/6913.

In addition, the State of California recently defined what a blockchain and smart contract are. 
See http://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_ 
id=201720180AB2658.

Three Definitions of Blockchain
The blockchain technology has clearly been transformational in the financial, logistics, and 
government sectors. The following definitions are aligned to the specific audiences of technical, 
business, and legal that I’ll be mentioning throughout this book:

 ◆ Technical definition—A globally shared and secured data structure that maintains a 
transactional backend database that is immutable.

 ◆ Business definition—A business network that is used between peers to exchange value. 
Value can be currencies, tracking information, or anything that interested parties require 
to be maintained on the blockchain ledger.

 ◆ Legal definition—A corruption-resistant string of ledger entries shared over a network by 
multiple parties not requiring a centralized intermediary to present and validate 
transactions.

As a customer-facing professional, you must define the right blockchain jargon to the right 
audience. Not everyone is going to be technical nor is everyone just concerned about the busi-
ness aspects. When you’re discussing blockchain with your customers, try to appreciate the role 
that they are in and cater the definition to them. This will likely facilitate understanding around 
the blockchain technology.

History of Blockchains
As previously mentioned, the first known blockchain solution was Bitcoin. Bitcoin’s main 
innovation was bringing cryptocurrency to the world. Cryptocurrency allows people to transfer 
value without the centralized high costs and improves on the slow transfer times and other 
challenges associated with legacy banking systems, such as SWIFT. SWIFT is a proprietary global 
financial network for its membership of banking institutions.

Bitcoin was essentially an experiment that started a march toward a decentralized payment 
approach that left banks out of the transaction. Bitcoin was devised during the great financial 



6 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

recession of 2007 and 2008. Removing the banks provides benefits such as decentralization, faster 
transfer, and lower risk because one controller is not performing payment processing centrally. 
Decentralization, P2P, and cryptography are at the core of Bitcoin’s success around the world. In 
addition, its effects will certainly change the payment and remittance market for the better by 
lowering remittance costs for consumers.

Besides bringing cryptocurrency to the masses, Bitcoin’s second innovation was the platform 
it runs on, which is the blockchain or distributed ledger. For enterprises, the blockchain disrup-
tion will take place because it provides one or more capabilities around compliance, cost efficien-
cies, or even transparent transactions for the customer base. The benefits for the enterprise in 
some industry verticals could be multifold such as what we are witnessing in the logistics sector 
around blockchain acceptance. I believe blockchain is the next great technology that will enable 
more financial engineering for companies just as cloud computing or offshoring has historically.

Cloud computing is a centralized form of data center management that is totally dependent 
on cloud providers performing accordingly. Trust is clearly expected for this relationship to work 
around data security, availability, and support. In Chapter 7, “Blockchain as a Service,” I discuss 
more about cloud computing and how to deploy a blockchain on various providers.

Cloud computing has significant benefits to the user and has leveled the playing field 
between large Fortune 100 companies and small startups. Smaller companies can utilize cloud 
services at the same cost that a large company can. The cloud has also allowed companies to 
reduce overhead, reduce investments in infrastructure, and indirectly increase executive compen-
sation along with corporate earnings.

In fact, a company’s most important asset is sometimes not its employees but rather its data. 
Therefore, if companies are going to let another company control access to their data to save 
money, then those cloud companies, in my experience, will get into blockchain because of the 
ability to utilize a consortium and share costs. Blockchain as a service (BaaS) has already made 
significant headlines and has major backing by all the major cloud providers. The business 
model for many organizations follows the monetization of the collection, mining, and distribu-
tion of data. It’s really all about the data and creating revenue from that data at the lowest cost 
historically.

This business model could also be enhanced through the use of consortiums. Consortiums are 
agreements that are made between organizations to work together and collaborate. Consortiums 
are communities of people or organizations with the same use case for a service.

Generally, these consortiums provide some benefits such as increased cooperation, standardi-
zation, integration ease, and even financial efficiency.

The consortium approach that is currently used in some of the most successful blockchain 
implementations can provide significant ROI, TCO, and other financial benefits to the member 
companies. If your customer has, for example, numerous points of overhead, then consider 
talking about blockchain use cases that they can relate to. Customers who have intermediaries 
such as transfer agents, customs inspectors, attorneys, and accountants are all spectacular 
potential targets for blockchain technology. In Chapter 6, “Enterprise Blockchain Economics,”  
I cover the many benefits of blockchain economics such as consortiums.

The reality is that companies that have been immensely successful are investing millions and 
even hundreds of millions into blockchain technology. They are not doing it for “goodwill” but 
as a means of survival. It’s all about the changing business environment, which is becoming 
globally centralized as a result of economics.



hIstory of BlockchaIns | 7

The list of companies that are investing in blockchain technology is a “who’s who” of the 
Fortune 500, and I would not bet against them based on my experience. They see potential in the 
technology from several angles such as security, privacy, financial, and even legal requirements.

NOTE “I think this is the beginning of the point where now these technologies are becoming  
mainstream enough, people understand it enough, that they can begin to deploy it. I expect this to 
grow pretty rapidly in the next couple of years.” —Mark russinovich, cto Ms azure (https:// 
www.investors.com/news/blockchain-  mainstream-  industry-  applications-   
microsoft-  azure-  cto/)

Historically, some consistent factors of blockchains that have had a major impact on the 
enterprise acceptance of blockchain technology are as follows:

 ◆ Autonomous innovations such as smart contracts and decentralized applications (dapps) 
have contributed to the impact that enterprises can have through the efficiencies that can 
be attained.

 ◆ Cost-effective solutions have reduced intermediary costs or overhead costs such as 
reducing the number of intermediaries or all intermediaries for an enterprise.

 ◆ Transactions costs for payment remittance, such as on interbank transfers or settlements, 
have greatly affected profitability in companies, especially in the financial sector.

 ◆ Providing transparency in supply chains has enabled consumers to understand the 
sourcing of their buying choices and the chain of custody from source to market.

 ◆ Permissioned blockchains can scale and provide enterprise-level security.

 ◆ Perhaps the most important innovation is the smart contract. A smart contract is essentially 
computer code that executes a specific task and when properly developed as part of a 
distributed application can provide significant efficiencies, compliance, and performance. 
(During the course of the book, I will discuss smart contracts from both a business 
perspective and a technical perspective.)

It is important to understand how a technology has evolved, how it has changed over time 
and in structure, or how it provides value to organizations. I will now give you an idea of how 
blockchain really got started from an even older historical perspective.

The Byzantine Generals Problem (BGP) is considered a classic problem of computing. To 
explain the military metaphor, BGP can occur when a number of generals (from the same army 
or even allies) have surrounded a walled castle or a city on all its sides. The balance of power is 
such that all generals must attack at the same time in order to take the city.

In computer science, this is referred to as a distributed node network. It is critical to understand 
how a centralized system compares to a decentralized system to understand why Bitcoin came 
about. For example, what happens when a distributed system gets out of sync? How does the 
system handle an out-of-sync status?

In a centralized network, there is one central authority or server. The other participating nodes 
on the network act like clients or entities that accept messages and perform tasks.

In a decentralized network, there can be multiple servers that receive messages from one 
centralized server. The individual nodes are connected to the secondary servers. In another form 



8 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

of a decentralized network, all servers are of “equal” responsibility in the network, with no 
centralized server or master/slave relationship. In many cases, a decentralized network is 
considered a subset of a distributed network in many cases.

In distributed systems, there is no server with a centralized authority. Each node on the 
network is connected to every other node and has the same authority and processing capacity, 
which is shared. This is similar to a blockchain.

Figure 1.3 compares centralized systems, decentralized systems, and distributed systems with 
highlighted node connections.

Blockchains by definition are not centralized systems, although some blockchains have 
centralized properties over decentralized or distributed properties. In Nakamoto’s 2008 paper 
detailing Bitcoin, he outlined a solution to the nature of distributed nodes. (You can compare 
nodes to generals in our Byzantine Generals Problem.)

The industry really started after Nakamoto came out with Bitcoin in 2009. However, the 
enterprise environment did not really get started until 2015 with permissioned blockchains. 
(Permissioned blockchains are generally referred to as enterprise blockchains.) So, the blockchain 
technology is no more than 10 years old the time of this writing, and enterprise blockchains such 
as Hyperledger (covered in Chapter 2, “Enterprise Blockchains: Hyperledger, R3 Corda, and 
Ethereum, Quorum”) are less than 5 years old!

NOTE the following are the release dates for popular blockchains:

 ◆ 2009—Bitcoin

 ◆ 2015—ethereum

 ◆ 2015—hyperledger

 ◆ 2017—r3 corda

Centralized
Systems

Centralized
Server

Server Connected
to Main Central
Server

Individual Nodes or
TerminalsLegend

Decentralized
Systems Distributed Systems

Figure 1.3 
comparing networked  
systems



BlockchaIn vs. tradItIonal dataBase | 9

Blockchain vs. Traditional Database
It is important to understand how the distributed blockchain ledger differs from a traditional 
database. A distributed ledger is a database that is stored and updated independently by each 
node in the blockchain. Every node essentially maintains a copy of the blockchain. For example, 
in the Ethereum blockchain network, there were more than 16,000 nodes at the time of writing. In 
the Bitcoin blockchain network, there are more than 7,000 nodes at the time of writing. Why is 
this important? Every node that is online has a current copy of the working blockchain. If you 
lose a few nodes, it’s no big deal since there are thousands of other nodes that maintain a copy. In 
the Ethereum network, when a transaction is written to the ledger, it also is written to more than 
1,600 other nodes. Does a centralized database maintain 1,600 copies of its database? Of 
course not.

Figure 1.4 shows the vast Ethereum network with the Etherstats.io service. You can view 
many different data points of the Ethereum blockchain, as Etherstats provides transparency into 
the Ethereum blockchain.

An enterprise would likely be interested in using the Ethereum virtual machine (EVM) for 
running its off-chain smart contracts or for a token platform that is being built for a distributed 
application known as a dapp. It would then look at the Ethereum Explorer referenced in 
Figure 1.4 and review the hash rate or the gas numbers.

The Ethereum ledger is also great for keeping track of transactions and providing transpar-
ency to your customer base. In Chapter 2, I will cover Ethereum in much more detail and explain 
why enterprises are interested in Ethereum.

What is the biggest difference between a database and distributed ledger or a blockchain? 
Well, the decentralized and distributed nature of the blockchain is what makes blockchain 
ledgers unique compared to traditional databases such as SQL. Databases and ledgers are 
generally centralized, meaning that there is a centralized administrator or centralized node 
structure that can create, delete, modify, or update the database. Some common databases 
include Microsoft SQL, Oracle PL/SQL, and IBM DB2.

In the traditional database world, objects are used as a data structure, and these objects are 
mutable, meaning that they are able to be modified or deleted. In a blockchain, an object is not 
modifiable after it has been created, and therefore it is considered immutable.

Figure 1.4 
ethereum network 
etherstats.io



10 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

Distribution of Trust
The primary solution that blockchain technologies really provide as compared to a traditional 
database is around the distribution of trust. In a traditional database, the trust is centralized; in a 
blockchain, the trust is distributed among nodes of the blockchain.

Distribution of trust means that not only does one blockchain node have a copy but every 
blockchain node maintains a copy. For example, if there are 1,000 nodes in an enterprise block-
chain, then at its truest form the blockchain acts as a “truth agent.” The likelihood that 1,000 
nodes could be hacked or controlled is statistically impossible with blockchains that are true 
blockchains since the ledger is a distributed ledger.

Consensus and Trust
Blockchain ledgers are decentralized, distributed, and immutable. This is critical to trust, which 
is built on the fact that they can’t be modified or deleted.

Consensus is an approach that is utilized on a distributed ledger network where all the 
network nodes maintain a copy of the ledger. The ledger is used to come to an agreement on 
whether a transaction is valid.

For example, in Ethereum, the ledger, which is distributed among nodes in more than 100 
countries at the time of writing, is used for blockchain transactions. This ledger is distributed 
globally and can be accessed from anywhere with an Internet connection. To access the ledger, 
you would need the public keys that Ethereum uses for authentication.

Figure 1.5 provides more insight into how an Ethereum transaction occurs at a high level. 
Jamie is being sent $100. This amount will be deducted in ether from the sender’s wallet and 
deposited into the receiver’s wallet.

Remember, the nodes in the blockchain network in most permissionless (enterprise) block-
chains have a copy of the whole blockchain. This means that every single node on the network 
processes every transaction that occurs, and there are multiple copies of that ledger. There is now 
consensus (an agreement) that this transaction is valid.

Summary of Differences Between Ledgers and Traditional Databases
You now know that blockchains have ledgers, and these ledgers are different from traditional 
databases in the following ways:

 ◆ Legacy architectures in databases are basically centralized repositories of managed data. 
This data, though, is usually structured and controlled centrally. Blockchains are decen-
tralized and distributed between nodes on the blockchain network. Data is managed by 
consensus and not centrally controlled.

 ◆ SQL or NoSQL are common legacy database applications. SQL is the most widely used 
database. Blockchains do not use SQL or relational database structures.

 ◆ Whether centralized or distributed, traditional databases use client-server network 
architecture. Blockchains are decentralized and distributed data structures.

 ◆ Database processing speed is referenced as transactions per second (TPS), and legacy 
databases are much quicker in most cases compared to blockchains when it comes to TPS.

 ◆ Control of the database remains with a designated authority in a legacy database, whereas 
in a blockchain there is no centralized authority.



BlockchaIn vs. tradItIonal dataBase | 11

Ethereum App

Wallet WalletEVM

Distributed Network

Jamie
requests $100
Rent this month

Pay $100

data

You paid Jamie
$100

datavalue value
a3fa29ce:
920 eth

bd2ba9b1:
30 eth

a3fa29ce:
920 eth

bd2ba9b1:
30 eth

Figure 1.5 
ethereum transaction



12 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

 ◆ Data can be modified or even deleted in a legacy database, but in a blockchain this cannot 
occur since a blockchain is immutable.

 ◆ Databases conform to the principle of CRUD (create, read, update, and delete), and 
blockchains conform to the principle of CR (create and read only).

Cap Theorem
The CAP theorem, also known as Brewer’s theorem, was introduced by Eric Brewer in 1998, and 
provides significant insight into the problem of distributed systems had around maintaining 
consistency, availability, and partition tolerance and was based on factual evidence at the time.

In 2002, the CAP theorem was proven as a theorem by Seth Gilbert and Nancy Lynch, 
respectively. The CAP theorem states that any distributed system cannot have consistency, 
availability, and partition tolerance simultaneously. Another way to look at the CAP theorem is 
that it is a tool that can be used to make system designers aware of the possible property 
trade-offs while designing networked data stores.

According to the CAP theorem, there must be some property that is reduced to provide for the 
other two properties. The properties in the CAP theorem are as follows:

 ◆ Consistency means all networked nodes in a distributed system have the same view.

 ◆ Availability means that the nodes in the system are available, meaning they are online and 
accepting requests.

 ◆ Partition tolerance means that if a node goes down, other nodes are fine.

Note that it has been proven that a distributed system cannot have consistency, availability, 
and partition tolerance simultaneously. Essentially, you cannot have them all in a distributed 
system, and when designing an enterprise service—whether or not the service is a blockchain—
you will need to choose what properties are more important to provide to your customer.

The CAP theorem categorizes systems into three categories: consistent partitioned (CP), 
consistent and available (CA), or available and partition tolerant (AP).

When considering a distributed ledger, realize that latency will come into the picture to some 
degree and needs to be designed around. Ledgers that are distributed over a local data center 
will, of course, perform differently than ledgers that are distributed on a cloud provider’s regions 
and zones. Latency can make or break an application and the users’ experience with the 
application.

Figure 1.6 shows how the CAP theorem is structured. Notice the overlap between the three 
properties. These three properties in a blockchain will never be perfectly aligned.

Consistency CA

CP AP

Availability

Partition
Tolerance

Figure 1.6 
cap theorem



coMMon ProPertIes of PerMIssIonless BlockchaIns | 13

For example, it is important to appreciate the three CAP theorem as applied to your block-
chain network.

 ◆ Consistency is achieved only if all nodes have the same shared state, meaning that they 
have the same up-to-date copy of the data.

 ◆ Availability is achieved only if all nodes are up and running and are responding to 
transaction requests for the latest copy of data on the ledger.

 ◆ Partition tolerance is achieved between two nodes or more only if they are able to commu-
nicate with each other. Communication on any network is subject to latency, jitter, and 
TCP protocol challenges.

Consistency is achieved in blockchain networks using consensus algorithms that ensure all 
nodes have the same copy of the data. This form of consistency is similar to replication, but in the 
IT world we would call this state machine replication. The blockchain is a means for achieving state 
machine replication, and this can be accomplished in several ways based of course on the 
blockchain.

There are two types of faults that a blockchain node can experience on a distributed network.

 ◆ The first type of fault is called a fail-stop fault. This type of fault occurs when a node has 
merely crashed. Fail-stop faults are the easier ones to deal with of the two fault types. The 
Paxos protocol can be used to resolve this concern. (Paxos is a protocol suite that solves 
consensus challenges in a network of inconsistent nodes.) Basically, networks have 
challenges such as latency that can greatly worsen the more a network is distributed.

 ◆ The second type of fault is one where the faulty node exhibits malicious or inconsistent 
behavior arbitrarily. This fault is difficult to handle since it can create arbitrary results.

Consistency on the blockchain is not achieved simultaneously with partition tolerance and 
availability, but it is achieved over time. Since the consistency is achieved over time and is not 
immediate, it is called eventual consistency. Distributed networks are slow, and maintaining this 
consistency needs to be addressed.

The concept of mining was introduced in Bitcoin for this purpose to maintain the consistency 
of the blockchain network. Mining is a compute-intensive process that facilitates the achievement 
of consensus by using the proof-of-work (PoW) consensus algorithm.

Mining can also be defined as a process that is used to add more blocks to the blockchain as a 
result of the consensus method. PoW and other common consensus methods are covered in 
detail in Chapter 4, “Understanding Enterprise Blockchain Consensus.”

Common Properties of Permissionless Blockchains
Permissionless blockchains are blockchains that open to the public and have no permissioning 
meaning the users do not need authorization to use the platform. The right customer may very 
well be a business-to-consumer model where the customer may want visibility into a special 
order such as a custom necklace  that is being sourced overseas and is moving thru the logistical 
processes which would provide the customer “visibility” or in blockchain what we would call 
“transparency”.

Table 1.1 shows the more commonly referenced features of what a blockchain provides. As 
you can see, there are a handful of common features that blockchain provides.



14 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

Blockchain and traditional databases have properties that are similar to each other but also 
have properties that are not similar to each other. For example, both a blockchain and a tradi-
tional database replicate data. However, the way replication is initiated, achieved, and handled is 
actually very different from a comparative standpoint.

Perhaps the most important difference is how blockchains and databases handle operations 
on the ledger. Blockchains will only insert operations to the ledger, meaning that the transaction 
is one-way. In a database, the transactions can be any transaction from an insert or delete 
operation, meaning create, update, or delete.

Figure 1.7 compares properties of a blockchain to a traditional database: operations, replica-
tion, consensus, and invariants. When comparing a database to a blockchain, the property 
difference is significant.

Table 1.1: common Blockchain features

Feature Notes

global computer network distributed nodes, with no centralized control of nodes.

ubiquitous access can access the resources with only an Internet connection from anywhere.

censorship and tamper-
proof ledger

no entity can modify or delete data, which makes the blockchain immutable. 
Immutability provides data compliance since it cannot be deleted or modified.

open source uses programming languages that are portable, which allows ease of 
development.

compliance comes with smart contracts that are validated. the blockchain ledger also is 
verified by audits.

Multiple users no limitations to who can join the blockchain, and the accounts scale.

trust trust in the code (smart contracts), which means that users place trust in the 
blockchain technology.

guarantees atomicity, synchrony, and provenance.

BlockchainProperties

Operations

Replication

Consensus

Invariants

Only insert operations

Full replication of block on every peer

Majority of peers agree on the outcome of
transactions

Anybody can validate transactions across the
network

Traditional Database

Can perform C.R.U.D. operations

• Master-slave
• Multi-master

Distributed transactions
(two-phase commit)

Integrity constraints

Traditional DatabaseBlockchainFigure 1.7 
Blockchain vs.  
traditional database 
comparison



BlockchaIn PrIncIPles | 15

It is important to note that the blockchain allows for two specific functions only in its truest 
implementation.

 ◆ The validation of a transaction

 ◆ The writing of a new transaction

Notice that modifying data and deleting data are not functions blockchains support. 
Blockchains append to the blockchain, and that is the only function that should be supported. 
Blockchains are stateful programs and thus have some mechanism to keep track of and update 
state. They maintain the past and thus remember previous transactions that may affect the 
current transaction. The term used in blockchain transactions is append. (I will be covering this in 
detail throughout the book.)

Why the Blockchain Is Considered Revolutionary
During the course of the last 100 years or so, the advancement of life-changing technologies has 
been dramatic. It is also reasonable to say that the potential of newer technologies such as 
artificial intelligence, machine learning, and blockchains will all impact our lives significantly. 
Technology often can be revolutionary, and the blockchain technology looks like it will be 
one of those.

The blockchain technology is revolutionary in several ways, as listed here:

 ◆ The blockchain technology is a syncing of technologies that now make sense to implement 
strategically.

 ◆ Trust is at the center of blockchain technology and through the use of consensus removes 
intermediaries from the network and thus creates new efficiencies that companies can 
really benefit from, such as providing transparency, a root of trust, a reduction in labor 
costs, and numerous other benefits.

 ◆ The blockchain technology in its true sense, as specified by Nakamoto, is a “tamperproof 
public ledger of value.” The Bitcoin platform enabled citizens of the world to make 
transactions without the need of intermediaries.

The blockchain technology is disruptive to the status quo since legacy applications and 
business processes are being phased out with blockchain applications.

Blockchain is a platform with numerous use cases for enterprises. The number and quality of 
organizations investing in blockchain testing, implementation, and production specifications is 
impressive.

Blockchain Principles
Clearly, the principles implicit in blockchain technology have lent themselves to the redesign of 
software, businesses, organizations, and even governments. The principles of blockchain have 
renewed trust in users in an era of digital economics and intrinsically fair social systems.

 ◆ Trust is provided through the implementation of technology. The technology used in a 
blockchain for establishing trust is provided through encryption and code which validates the 
transaction requirements and will determine if a transaction is securely accepted or rejected.



16 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

 ◆ Integrity is provided through the blockchain network where there is no centralized 
authority or failure point, and every transaction is recorded.

 ◆ Incentives are distributed to all stakeholders to the participants that produce blocks, and 
these participants are called miners.

 ◆ A blockchain is decentralized, meaning that the data is distributed among thousands of 
nodes and there is no centralized point of control.

 ◆ Privacy means that users are in control of how the data is handled. There is no require-
ment for compliance such as know your customer (KYC), for example.

 ◆ Equal access/inclusion is in effect in the manner that everyone in the world should have 
the ability to participate in the blockchain network.

Trust or Trustless
Blockchains do not actually eliminate trust; rather, they minimize the amount of trust required 
from any single actor/participant on the network. They do this by distributing trust among 
different actors in the system via an economic game that incentivizes actors to cooperate within 
the rules defined by the protocol. The economic incentives are presented for participating in the 
permissionless blockchains such as Ethereum or Bitcoin; miners produce blocks and obtain 
rewards for mining.

Blockchains define a secure communication protocol that allows two individuals to transact 
with one another in a “peer-to-peer” manner over the Internet. This means there are no interme-
diaries facilitating transactions.

When you digitally transfer value from one account (wallet) to another account (wallet) on the 
blockchain, you’re trusting the underlying blockchain network to enable that transfer and to 
ensure the sender’s authenticity along with the cryptocurrency’s validity. Authenticity means that 
the sender is who they present themselves to be electronically via public key encryption usually 
implemented through certificates and keys. Validity means that the sender has the correct wallet 
and has funds in that wallet to actually send the correct amount of funds.

For example, in the centralized approach, you may need to use Western Union to send funds 
from the United States to Peru. The cost to do this as well as the time to perform this transfer 
could be substantial in some cases; it could be a few hours, a few days, or longer. In addition, the 
transfer fees can be 10 times or more than using cryptocurrencies on a blockchain network.

Basically, you are “trusting” the intermediary to validate the transaction, send the transaction, 
and confirm the transaction has completed. You might use this service because you expect the 
transfer to be valid and authentic since the intermediary is performing a fiduciary responsibility. 
People clearly trust banks, nonbanks such as PayPal, and other entities such as Western Union to 
send funds to people who request them. However, that trust can come at a cost, whether finan-
cial or otherwise.

Trustless is generally used to describe “distribution of trust” where the trust is not placed in a 
centralized concentration but is actually distributed in a decentralized manner to all the partici-
pants in the blockchain.

With blockchain consensus methods, this approach allows participants to share digitally 
distributed “truth” that is stored on a distributed ledger that is not centralized. The truth could 
be a list of transactions, voucher IDs, customer addresses, or any assets or information that can 
be written to a blockchain.



BlockchaIn PrIncIPles | 17

Trust Blockchains
Trust is at the center of all blockchains whether permissioned or permissionless, albeit they 
approach trust differently.

A blockchain is a truth machine because of the implementation of the technology used, and 
this implementation of the ledger maintains the truth since the ledger is an immutable 
record of trust.

In its most basic form, a blockchain is an immutable record of transactions. These transactions 
can be any type such as movement of money, products, or even services. Blockchains are 
designed to store information in a way that makes it virtually impossible to add, remove, or 
change data without being detected by other users.

When considering blockchain technology, it is imperative to understand how trust is estab-
lished with blockchains. The following list highlights some important considerations:

 ◆ The blockchain technology is about storing some kind of data—for example, transactions 
such as in the case of the Bitcoin blockchain or tokens in Ethereum. The platform is trusted 
to perform these transactions because of the code and encryption utilized. Trust is 
distributed between the blockchain nodes on the Ethereum platform.

 ◆ The blockchain technology is essentially transferring trust from an intermediary to 
technology (software code).

 ◆ Storing data in the blockchain happens through cryptographic functions such as certifi-
cates and keys.

 ◆ Private keys/public keys are used to secure transactional data written to the ledger 
through Public Key Infrastructure (PKI).

When considering the reasons why users can trust a blockchain, there are two main 
considerations.

 ◆ All transaction data on a blockchain is assumed to be trustworthy because the blockchain 
protocols are enforced and encryption is used.

 ◆ The blockchain users base this trust in a blockchain on the following:

 ◆ The blockchain data has not been tampered with and is being managed by nodes 
producing blocks on the blockchain.

 ◆ The blockchain ledger that contains the data is immutable and therefore cannot be 
deleted, modified, or moved.

Trust is at the epicenter of how blockchains function and the value it creates for enterprises 
and users.

Trustless Blockchains
When considering blockchains, the model that is used is considered a trustless model where trust 
is transferred from an intermediary to technology.

A trustless model does not require “trust” in order to safely interact and transact as trust is 
considered inherent in the technology platform. A trustless blockchain, in reality, is a transfer of 



18 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

trust to the blockchain technology from humans in centralized organizations (banks, govern-
ments, corporations).

Blockchains are built on the premise that transparent code (smart contracts) essentially 
removes the need for intermediaries. Smart contracts can essentially reduce the need for account-
ants, lawyers, bankers, and so on. Essentially, trust is transformed. “Trustless” in blockchain 
essentially creates the trust by default, which means when users utilize a blockchain, they are 
“trusting” the technology to perform as it should.

Transparency and Blockchain
The blockchain technology is decentralizing information dissemination and providing transpar-
ency that has never been seen before. Blockchain’s main focus on ledger management and 
immutable records makes it a perfect technology candidate for the decentralized tracking of 
resources, which could provide transparency to an enterprise customer purchasing something of 
value, for example.

Consumers increasingly require more transparency into the services and products they 
purchase. The following list are some areas of focus where the blockchain industry is seeing 
significant demand for use cases, proof of concepts, and implementations:

 ◆ Food supply traceability

 ◆ Labor credential validation

 ◆ Logistics and supply chains

 ◆ Customs compliance

 ◆ Corporate governance

The transparency of a blockchain comes from the openness of the blockchain transactions 
viewable to anyone. This transparency, in Ethereum, for example, is accomplished using a 
blockchain explorer such as Etherstats. A blockchain explorer provides insight into the transac-
tions on a blockchain. For example, in Ethereum your wallet address is what links the transaction 
to the blockchain user. There is no identifying information, such as name or address of the 
wallet holder.

The transparency provides insight into how many Ether was sent and received, to what wallet 
address, and other critical information such as the block height or transaction ID. However, it is 
important to note that transparency does not provide an identify of who actually sent the ether.

For example, this blockchain explorer translates the ledger and provides some privacy in the 
sense that a wallet address is displayed (transparency) but the owner of the wallet is not pro-
vided publicly (privacy).

Pseudonymous is used to reference a blockchain transaction, where the sender and receiver are 
not directly identified.

Here are some examples of blockchain applications that provide this transparency:

 ◆ Ledgers stored in the blockchain make it easier to track ownership and liability during 
transit, limiting liability protecting practitioners and pharmacists who administer drugs 
to patients

 ◆ Blockchain technology can be applied to several different aspects of the healthcare space 
such as managing electronic health records (EHRs), which will be used for validating 
patient data, and even tracking research methods used to make safer drugs across 
clinical trials.



BlockchaIn PrIncIPles | 19

 ◆ The blockchain technology in the logistics industry, for example, has numerous  
in- production use cases. One of the more widely publicized is focused in the jewelry 
industry, which has traditionally been known for high levels of fraud, child labor issues, 
false metal mining, and a clear lack of transparency.

 ◆ A precious metals consortium with IBM has established a blockchain initiative to bring 
transparency to the consumer. For example, consumers can validate that their purchases 
are ethically sourced from sustainable resources without the involvement of child labor.

Some common consumer advantages of transparency in blockchain technology include the 
following:

 ◆ Blockchains are open for viewing and validating transactions, meaning that they are 
transparent for customers, consortium members, and the enterprises.

 ◆ Blockchains provide a pseudonymous feature for participants that allows the transactions 
to be transparent but the users to be unidentified by direct means such as name or 
address. A wallet address is used, but the name of the wallet owner is not clarified.

 ◆ Participants share the same ledger and establish a shared consensus service that can be 
referenced by the stakeholders.

 ◆ Blockchains provide integrity opportunities for businesses that provide services in a 
logistic blockchain. Integrity means that customers can validate if the business is actually 
performing the tasks that they say. For example, is your favorite children’s cereal company 
actually buying corn without GMO seeds?

Using a blockchain can result in financial transparency and reduce the need for intermediar-
ies. Other considerable benefits of blockchain solutions in the logistics sector include the 
following:

 ◆ Transparency to the consumers about the supply chain concerns such as farm to table

 ◆ Incentives or responsibility from the suppliers to act responsibly and ethically

 ◆ Mileage verification for truckers and their drivers to meet the government agency 
reporting requirements

 ◆ Labor verification where no children are used in the mining or processing of jewelry

 ◆ Validation of ethical sourcing from suppliers such as fish processors

 ◆ An immutable shared view of the ledger that can be viewed by customers of a baby 
formula manufacturer

NOTE “dubai’s adoption of blockchain technology at a city-wide scale is a testament to its  
commitment to positively transform government, from service provider to service enabler . . . . We 
believe blockchain technology, with its built-in efficiency, accountability and security, holds a key to 
achieving our vision.” —dr. aisha Bin Bishr, director general at smart dubai office (https://www 
.unlock-   bc.com/news/2017-   12-   19/the-   transformed-   role-   of-   government-   in-    
the-   blockchain-   era)



20 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

Blockchain Transaction Basics
Blockchain transactions are processed in somewhat different ways depending on the platform. 
For example, Bitcoin processes transactions differently from Hyperledger Fabric, which should 
be expected since the use cases are very different.

The focus of this section is to cover consensus and how transactions work at a generic level. 
Chapter 4, “Understanding Enterprise Blockchain Consensus,” covers specific details around 
transactions for Ethereum, Hyperledger Fabric, R3 Corda, and Quorum.

Consensus
Consensus is effectively the foundational principle of a blockchain and is how the network nodes 
come to agreement. All nodes in the blockchain network maintain a copy of the ledger, and each 
node can source historical transactional data from the network to validate requests.

Consensus, simply put, is a way an “agreement” is reached for the distributed ledger nodes 
on the network. This agreement effectively states how this will be done and what needs to be 
verified to be a valid transaction.

This approach to an agreement, especially when considering a permissionless blockchain 
network, is critical since all nodes on the network need to agree on the validity of a transaction. 
In a permissioned blockchain, this consensus algorithm can be modified or even manipulated 
through policies.

For example, in Hyperledger Fabric, which is a permissioned blockchain, we can effectively 
specify how many nodes (peers) need to approve a request. The number of peers can be a single 
peer, ten peers, or all the peers.

Consensus (agreement) is reached through the implementation of a consensus mechanism, 
protocol, method, or algorithm. In reality, a mechanism, method, or algorithm are all referring to 
the same thing, which is how a distributed ledger platform reaches an agreement.

For the purpose of this book, I will mainly reference the consensus algorithm since most 
blockchain technology vendors seem to have standardized on that approach.

Every blockchain has a different blockchain algorithm that provides specific instructions on 
how the distributed ledger network comes to an agreement and approves transactions.

Proof of work (PoW), proof of stake (PoS), and many other consensus algorithms will be 
covered in Chapter 4, “Understanding Enterprise Blockchain Consensus,” which discusses 
consensus algorithms in more detail.

Blocks
Blockchain transactions are recorded on the blockchain network and rely on user verification to 
be fully authenticated. The transactions executed during a given period of time are recorded into 
files called blocks. Blocks form the foundation of many blockchain networks, as each new block is 
linked to the previous block of transactions that form the blockchain network.

A transaction is a transfer of cryptocurrency value that is broadcast to the entire network and 
collected in blocks, as previously mentioned. The recipient of the transaction is represented by 
the address, which is a string of 26 to 35 letters and numbers. Once verified using the private 
(secret) key, these transactions are then recorded on the network ledger where this transaction is 
publicly available. The blocks of transaction information make up the blockchain, with each 
block’s height representing the number of blocks preceding it.



tyPes of BlockchaIns | 21

Figure 1.8 shows how a Bitcoin transaction occurs in block sequence. You can trace how block 
1 is written first, then block 2 is written, and so on. Note that the hash is referenced in the 
blockchain, and therefore block 1 would have its hash referenced by block 2, then block 3 would 
reference block 2’s hash, and so on.

Types of Blockchains
Blockchains come in various architectures and can provide for different use cases. Blockchains 
when appropriately designed will meet the requirements of the enterprise customer and meet the 
use case required. Enterprises generally prefer blockchains such as Hyperledger Fabric or R3 
Corda, which are enterprise focused.

In this section, I will cover blockchain types and deployment concerns and also compare 
blockchains to cloud computing services.

Public, Private, and Hybrid Blockchains
Blockchains are generally considered infrastructure in most enterprises. Infrastructure means that 
the organization maintains production applications and maintains the application whether 
directly or indirectly through a service provider.

I generally compare the deployment of blockchains to cloud computing. In cloud computing, 
there are deployment models and service models.

A deployment model is essentially a business model. Let’s review what NIST states about 
cloud computing and then let’s apply this definition to blockchains.

Cloud computing is a relatively new business model in the computing world. According to the 
official NIST definition, “Cloud computing is a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of configurable computing resources (e.g., networks, 
servers, storage, applications and services) that can be rapidly provisioned and released with 
minimal management effort or service provider interaction.”

https://www.bartleby.com/essay/
Cloud-Computing-A-Profitable-New-Business-Model-P3S6F9L29BQQ

Block 1
Header

Block 1
Transactions

Hash of Previous
Block Header

Merkle Root

Block 2
Header

Block 2
Transactions

Simplified Bitcoin Block Chain

Hash of Previous
Block Header

Merkle Root

Block 3
Header

Block 3
Transactions

Hash of Previous
Block Header

Merkle Root

Figure 1.8 
Bitcoin blockchain



22 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

The National Institute of Science and Technology (NIST) defines deployment models as 
follows (https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublica-
tion800-145.pdf):

Private Cloud The cloud infrastructure is provisioned for exclusive use by a single organiza-
tion comprising multiple consumers.

Community Cloud The cloud infrastructure is provisioned for exclusive use by a specific 
community of consumers from organizations that have shared concerns (e.g., mission, 
security requirements, policy, and compliance considerations).

Public Cloud The cloud infrastructure is provisioned for open use by the general public.

Hybrid Cloud The cloud infrastructure is a composition of two or more distinct cloud 
infrastructures (private, community, or public) that remain unique entities but are bound 
together by standardized or proprietary technology that enables data and application 
portability (e.g., cloud bursting for load balancing between clouds).

Now if you essentially swap out the term cloud with blockchain, this is exactly what a block-
chain can perform, how it can be deployed, or even how it fits into an enterprise use case.

The notable exception is that in blockchain speak there are no “community” blockchains; 
however, there are “consortium” blockchains, which are serving the same deployment use case.

These consortium blockchains, which really are “communities,” are implemented by like- 
minded organizations sharing a blockchain. A good example of a consortium blockchain is 
Ripple, which is used exclusively by the financial industry for interbank payments, for example.

Figure 1.9 illustrates the common cloud computing deployment model. The different service 
models correlate to the level of effort that is provided by either the provider or the consumer. 
This model could be used as well for blockchain deployments. For example, blockchains could be 
deployed in the cloud as a platform or software as a service.

Applications

On-premise
Environment

Infrastructure

Networking

Storage

Servers

VirtualizationYo
u 

m
an

ag
e

O/S

Middleware

Runtime

Data

Applications

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Yo
u 

m
an

ag
e

M
anaged by provider

Yo
u 

m
an

ag
e

M
anaged by provider

M
anaged by provider

(as a Service)
Platform

(as a Service)
Software

(as a Service)

Figure 1.9 
cloud computing 
deployment model



tyPes of BlockchaIns | 23

Blockchains are commonly deployed in the cloud and could be deployed as infrastructure/
platform/software as a service in a cloud service. Providers such as AWS, Azure, and IBM, for 
example, provide services that are deployed in all three service models. AWS blockchain tem-
plates are considered an IaaS deployment, while IBM Blockchain Platform has two versions: one 
that is a SaaS and another that is more of a PaaS.

In terms of comparing cloud computing to blockchain, it is important to note that cloud 
computing at its truest form is a “centralized” approach to computing. Blockchains in their truest 
form are a “decentralized” form of computing. Anyone who has been in technology understands 
that when a technology is developed for one use, it generally can be adapted to other use cases. 
Blockchains are no exception, and as you will read throughout the book, blockchains have many 
different use cases, exceptions, and variations; some are centralized, and some are decentralized.

For example, Ethereum is essentially a decentralized global computer that processes  
smart contracts. Ethereum’s CTO Gavin Wood describes blockchains as a “global computer.”  
A computer is simply a computational machine; it takes inputs, processes these inputs using 
certain instructions, and creates outputs.

Blockchains run on computers that are “decentralized” in a permissionless blockchain. In 
Ethereum, this global computer consists of thousands of nodes that are distributed in more than 
100 countries.

NOTE cloud computing is essentially a business model, and you can choose to deploy that model in 
several ways. consider looking at blockchains as a business since they really are just that, a business 
model. they can be deployed exactly as a cloud computing infrastructure, if that’s what the company 
determines. Private, public, or hybrid deployments are all in use in blockchains today.

Blockchains that are open to anyone are generally considered public, permissionless block-
chains. Blockchains that are closed are generally considered private or permissioned blockchains.

Public Blockchains
Public blockchains are also referred to as permissionless or open blockchains that are open to 
anyone. Bitcoin was the original permissionless blockchain, as specified and developed by 
Satoshi Nakamoto. Transactions are processed by all nodes in the blockchain, and those transac-
tions are publicly viewable (transparent) in the blockchain. These transactions are also widely 
distributed. For example, Ethereum at one time had more than 6,000 nodes worldwide, and each 
node maintains a copy of every transaction. In Chapter 2, I cover the Ethereum blockchain and 
its infrastructure in more detail.

Public blockchains are open to anyone, meaning that you can participate in the blockchain. If 
you want to run an Ethereum node, you simply go to GitHub and download the blockchain. This 
assumes, of course, that you have the resources to run the blockchain and the technical knowl-
edge to install and configure the blockchain.

Figure 1.10 presents the high-level structure of a permissionless public blockchain and how a 
trustless peering is imposed on the network—that is, there is no centralized control of member-
ship or participation on the blockchain network.



24 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

Public blockchains have some benefits as compared to private blockchains, as listed here:

 ◆ Open read and write

 ◆ Widely distributed ledger

 ◆ Censorship resistant

 ◆ Secure due to mining (51 percent rule)

NOTE some common public blockchain examples are Bitcoin, ethereum, and Monero.

Private Blockchains
Private blockchains are also referred to as permissioned blockchains or enterprise blockchains. These 
private blockchains are a hybrid of a true blockchain since they are not decentralized but are 
more centralized. Centralization is at the core of an enterprise blockchain since one entity or a 
consortium maintain access to the blockchain. Accessing the blockchain network requires 
permissioning, meaning that one or all transactions are permissioned or authorized to proceed.

These blockchains can be open source, consortium, or privately developed blockchains.
Transactions are also handled differently in a permissionless blockchain. Transactions are 

processed by select nodes in the blockchain. For example, some blockchains, such as 
Hyperledger Fabric, can utilize channeling. Channeling can also be used to filter nodes, even in a 
permissioned blockchain, to keep them from participating in specific transactions that they have 
no direct interest in.

Transactions are not publicly viewable (transparent) in the blockchain. The transparency of 
transactions can be permissioned as well. (I will discuss use cases in Chapter 8, “Blockchain 
Use Cases.”)

The transactions are also generally locally distributed, meaning that the blockchain is in a 
centrally controlled data center. This approach is essentially the opposite of a permissionless 

Node

Distributed Ledger - Each
node processes transactions
and has a copy of blockchain

Transaction is encrypted
and signed by sender

private key

Transaction is validated and
added to the blockchain

ledger via consensus

Transaction is able to
be received

Node

Trustless
Peering

Seller
Buyer

Public Blockchain

Ledger

Node Node

Figure 1.10 
Public blockchain  
example



tyPes of BlockchaIns | 25

blockchain, where the nodes are processed worldwide on Ethereum blockchain nodes that are in 
uncontrolled servers.

Figure 1.11 presents the high-level structure of a private blockchain and how a trusted peering 
is imposed on the network. A private blockchain uses a trusted peering approach, which is 
different from a public blockchain. The consortium members, for example, will control member-
ship and/or participation on the blockchain network.

Private blockchains have some benefits compared to public blockchains, as listed here:

 ◆ They are enterprise permissioned and are controlled for privacy and security.

 ◆ They have faster transactions because of fewer nodes and a simple distribution of the 
nodes such as a limited geography. Node locality and scalability can directly affect 
performance.

 ◆ They have greater scalability because of the configuration flexibility and member-
ship control.

 ◆ They have compliance support because of the permissioning and controlled distribution 
of data storage in appropriate regions.

NOTE some common enterprise blockchains are hyperledger, r3 corda, and Quorum.

Table 1.2 compares the main comparison points of public and private blockchains, including 
significant differences in security, ledger access, identity, and other features that would be 
important to consider when designing a blockchain. Private blockchains create value to enter-
prises through various factors, such as membership, privacy, and even performance.

Bank Node

Distributed Private Ledger - Centralized under
one organization which controls the right to
view and send transactions. Example Ripple

Transaction is encrypted
and signed by sender

private key

Transaction is validated and
added to the blockchain

ledger via centralized nodes

Bank Network

Transaction is able to
be received

Bank Node

Trusted
Peering

Private Blockchain

Ledger

Bank Node Bank Node

BANK

Seller
Buyer

Figure 1.11 
Private blockchain  
example



26 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

Hybrid Blockchains
A hybrid blockchain is a blockchain that contains the features and functions of both a private, 
permissioned blockchain and a permissionless blockchain. For example, a company may require 
intense performance requirements and strict security adherence for their internal employees, but 
when it comes to B2C transactions, they may place it on an off-chain service (channeling) to 
process cryptocurrency transactions.

In a nutshell, you may want to consider a hybrid blockchain as similar to a hybrid cloud 
environment where you take features of both and provide a solution that meets your enterprise’s 
requirements.

Control, performance, transparency, compliance, and other features can be carefully orches-
trated in a hybrid blockchain solution. I compare hybrid blockchains to hybrid cloud solutions.  
A hybrid cloud essentially comprises the best of both worlds in cloud computing.

In a hybrid cloud solution, you can extend our on-premises data center to a cloud computing 
platform such as AWS. When extended to AWS, your data center can provide many benefits such 
as cost efficiency by reducing capital expenditures, short time use such bursting services during 
peak hours, or taking advantage of availability options.

Blockchains when deployed as a hybrid solution can be similar. A company can extend, for 
example, a Hyperledger Fabric blockchain that is on-premises to AWS or IBM BaaS. The main 
benefits could be to extend off-chain, to meet compliance requirements, or to extend a block-
chain network.

REFERENCE chapter 7 covers blockchain as a service (Baas) extensively with step-by-step instruc-
tions with aWs templates and IBM Blockchain.

NOTE “until now we’ve seen a proliferation of both public blockchains like Bitcoin and private block-
chains like hyperledger fabric. going forward, I think we’ll start to see the rise of hybrid  
blockchains, which combine the best of both worlds.” —stefan thomas, cto at ripple and  
cocreator of the Interledger payment protocol (https://bravenewcoin.com/insights/ 
hybrid-  blockchains-  the-  best-  of-  both-  public-  and-  private)

Table 1.2: Public vs. private blockchains

Public (Permissionless) Private (Permissioned

Access to ledger open read/write Permissioned read/write

Identity anonymous known identities

Security and trust open network (trust free) controlled network (trusted)

Transaction speed slower faster

Consensus PoW/Pos Proprietary or modular

Open source yes depends on blockchain

Code upkeep Public consortium or managed

Examples ethereum, Multichain r3 corda, Quorum



suMMary | 27

Figure 1.12 presents a decision tree for deciding whether to implement a public, private, or 
hybrid blockchain solution. A hybrid blockchain is an offshoot of a private and permissioned 
blockchain. A hybrid blockchain can also extend to a permissionless blockchain.

When choosing a blockchain type, another factor to consider is cost. I cover the cost of 
blockchain deployments extensively in Chapter 6, “Enterprise Blockchain Economics.”

Large enterprises will generally require the benefits that blockchain technology can deliver 
without the associated elevated risks of a public blockchain. If this is the case, then a hybrid 
solution may provide the enterprise with the right solution for the right use case.

In Chapter 3, “Architecting your Enterprise Blockchain,” I will discuss how private-public 
blockchain-focused projects such as Hyperledger, R3 Corda, and Ethereum Enterprise Alliance 
can enable organizations to be properly scoped around a blockchain solution.

Permissioned or Permissionless Blockchains
In this book, you will notice that public and private are sometimes used interchangeably with 
permissioned and permissionless blockchains. To be fair, these terms can in some cases have 
somewhat different use cases or meanings to different blockchain companies and organizations.

During my years of solutions selling, architecting, and implementing, it’s more than fair to say 
that specific vendors, service providers, and the media make things more difficult than they need 
to be. Even with the maturity of cloud computing, most vendors add their own twist on top of 
the industry-wide acceptance of the NIST cloud computing definitions.

Earlier in the chapter I covered public, private, and permissionless blockchain types. Now I’ll 
cover what a permissioned blockchain is. Permissioned blockchains are a form of blockchain that 
allow only authorized members to join the blockchain. Permissioned blockchains are ideal for 
enterprises that want some of the benefits of a blockchain such as an immutable ledger but do 
not want transparency, open membership, or smart contracts. Permissioned blockchains invari-
ably change the initial purpose of what a blockchain originally should be. That is, blockchains 
originally were open and permissionless, which essentially means they are open to the public.

Summary
Satoshi Nakamoto essentially combined computers and economics to create a blockchain 
platform called Bitcoin that changed how people needed it to interact with legacy institutions 
such as banks. Bitcoin came about as a direct result of the financial crisis of 2008.

Need Specific Controls,
Compliance, etc.?

Permissionless
Every node in the network
participates in consensus

procedure

Selected validators or
trusted nodes participate
in consensus procedure

Ethereum, Monero Hyperledger, Ripple

NO YES

Public Blockchain

Permissioned

Private BlockchainHybrid

Figure 1.12 
Blockchain deployment 
decision tree



28 | CHAPTER 1 IntroductIon to BlockchaIn technologIes

The blockchain technology is revolutionary, especially for the financial sectors and the 
logistical sectors. As you learned in this chapter, a blockchain is a type of distributed ledger for 
maintaining a permanent and tamper-proof record of transactional data.

Enterprises are just starting to understand the potential of blockchains for use in their 
organizations, for their users, and for their customers, and some have already begun adopting 
blockchain technology.

There are several definitions and several types of blockchain, depending on who you are 
talking. Blockchains that are open to anyone are generally considered public or open blockchains. 
Blockchains that are closed are generally considered private blockchains. Finally, enterprise 
blockchains are generally private, permissioned blockchains.



Chapter 2

In this chapter, I will cover the technical merits of the following enterprise blockchains, how they 
are structured, and where they fit into the enterprise:

 ◆ Hyperledger

 ◆ R3 Corda

 ◆ Quorum

 ◆ Ethereum

The technical merits covered in this chapter include security, consensus, virtual machines, 
features, and functions that are critical to understanding the blockchain platform. This chapter 
will cover the architecture at a fundamental level so you can understand the blockchain network 
and services. In Chapter 3, “Architecting Your Enterprise Blockchain,” I will focus on the steps of 
designing a blockchain network as well as architecture best practices for the specific blockchains.

Comparing Enterprise Blockchains
Blockchains are used in two main categories of IT solutions.

 ◆ Public, permissionless blockchains

 ◆ Private, enterprise, permissioned blockchains

A third approach, considered a hybrid solution, combines a myriad of private and public 
blockchain services. Hybrid blockchains will be discussed as a use case in Chapter 8, “Blockchain 
Use Cases.”

Enterprise blockchains have different requirements than public blockchains such as Ethereum. 
I will be discussing the merits of enterprise blockchains throughout the book.

As discussed in Chapter 1, “Introduction to Blockchain Technologies,” public permissionless 
blockchains use a networking protocol called the Internet Protocol (IP) to communicate with 
nodes on the blockchain network as well as to manage the distribution of transactions. Nodes are 
other virtual machines that are running the blockchain protocol.

Enterprise Blockchains: 
Hyperledger, R3 Corda, Quorum, 
and Ethereum

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



30 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

A blockchain will run a variation of protocols, and they can be somewhat different from each 
other on each platform. Ethereum uses a peer-to-peer network protocol, for example, whereas R3 
Corda uses a point-to-point network protocol.

Consensus is also vastly different between blockchains, and I will discuss this at a high level 
in this chapter. It will also be covered in more technical detail in Chapter 4, “Understanding 
Enterprise Blockchain Solutions.”

Table 1.2 shows how different public and private blockchains can be when it comes to the 
features and functions of the platform. Choosing the right blockchain platform may come down 
to just one feature.

REFERENCE during the use case sections in chapter 3, i will discuss how to choose a platform, as 
well as considerations for architecting your blockchain services, in more detail.

Hybrid Blockchains
In a permissionless blockchain, the ledger is open read/write, meaning that anyone can access 
the transaction records. This would be done through a blockchain explorer, for example. Other 
features such as identity, security, and trust are, of course, handled differently.

Enterprise blockchains such as Hyperledger Fabric, R3 Corda, and Quorum are distributed 
ledgers in which all participants are known and permissioned to be on the blockchain network. 
Transactions are role-based and determined by consensus in the network. Enterprise blockchains 
generally introduce a form of centralization to blockchains but may also be decentralized over a 
membership consortium. Modular components such as consensus or key management systems 
enable enterprises to determine what fits their use cases. Tokens or cryptocurrencies are gener-
ally not needed in a controlled blockchain ecosystem where membership is controlled. Some 
consortium blockchains such as Hyperledger may provide this capability later.

Enterprise blockchains can utilize “off-chain” data storage services, such as the Interplanetary 
File System (IPFS), to reduce costs. Created by Protocol Labs, IPFS is a peer-to-peer protocol 
where each node stores a collection of hashed files. IPFS is actually a fascinating approach to 
blockchain storage that can provide costing efficiencies and programmatic efficiencies. IPFS 
clearly refers to files by using hashes, therefore allowing for much richer programmatic 
interactions.

REFERENCE i cover ipFs in more technical detail in chapter 7, “Blockchain as a service (Baas).”

Enterprise integration may not require middleware or API changes to establish enterprise 
services. For example, with Enterprise Ethereum and Quorum, there is already some capability 
to extend the blockchain as a hybrid solution. A hybrid solution means that the blockchain can be 
extended from a permissioned to a permissionless chain such as Ethereum.

Enterprise blockchains are generally accepted to fall into one of several categories, the most 
common of which are as follows:

 ◆ Private enterprise blockchains are managed by a single organization. The participants are 
normally internal users.

 ◆ Consortium enterprise blockchains are managed by multiple trusted organizations. Access 
requires consensus by multiple participants in the consortium.

 ◆ Hybrid enterprise blockchains are generally used for extended off-chain capabilities. Hybrid 
blockchains can be a myriad of private and public extensions.



introducing thE hypErlEdgEr projEct | 31

Network Consensus

consensus varies significantly among the enterprise blockchains. it is important to appreciate that 
even though these consensus methods may be different, they still attempt to provide a method for 
reaching an agreement. consensus also will provide for reliability and may protect the blockchain 
network from vulnerabilities.

When considering blockchains from a presale’s perspective, it is imperative that you under-
stand the use cases for the different enterprise blockchains. Not every enterprise blockchain has 
the ability to meet every use case. I will now cover the major enterprises blockchains to give you 
an idea of how they actually compare and contrast. I cover each in more technical detail through-
out the book and also compare and contrast these enterprise blockchain features and use cases.

The really convenient part of getting into the enterprise blockchain space today is that there 
aren’t many enterprise blockchains to learn—no more than five, even if you include Ripple, 
which is a payment network for banks. I do not cover Ripple in depth in this chapter, mainly 
because it is a banking and payment network service and Ripple does not support smart 
contracts. Smart contracts provide essentially the main benefits for enterprise organizations 
around blockchain use cases.

Instead, this book will focus on Hyperledger, R3 Corda, Quorum, and Ethereum. Table 2.1  
shows the five major enterprise-grade blockchains and how they compare based on industry, 
ledger, consensus methods, smart contracts, and cryptocurrency support.

You can view the full chart online at https://www.horsesforsources.com/top- 5- 
blockchain- platforms_031618. It provides insight into how many solution providers out of 50 
surveyed actually have engagements in the enterprise blockchains.

Introducing the Hyperledger Project
The Linux Foundation hosts Hyperledger and provides a governance structure and oversight to 
the Hyperledger community. It is a global open source project and the result of collaboration 
from technology leaders. Linux Foundation also embraces a modular umbrella approach to 

Table 2.1: comparing enterprise blockchains

Ethereum R3 Corda Quorum Hyperledger Ripple

Industry cross-industry Financials cross-industry cross-industry Financial

Ledger permissionless permissioned permissioned permissioned permissioned

Consensus proof of work pluggable majority  
voting

pluggable probabilistic  
voting

Smart 
contract support

yes yes yes yes no

Cryptocurrency Ether (Eth) n/a n/a n/a ripple (Xrp)



32 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

enterprise blockchains. Hyperledger is an open source software licensing model, which allows 
the user to model code and distribute it in an appropriate manner.

As shown in Figure 2.1, Hyperledger uses an umbrella approach to manage its open source 
projects. As an organization, Hyperledger manages more than 100 open source collaborations 
(projects). The Hyperledger structure has three modules: Infrastructure, Frameworks, and Tools.

You can see that Hyperledger has six frameworks and six tools and utilities. I will focus 
mainly on Hyperledger Fabric for this book because of its wide development base and the 
significant enterprise use cases in play now. The umbrella strategy, also referred to as the 
greenhouse strategy, is a proven model that the Linux Foundation has used repeatedly in the other 
projects it maintains. Historically, the Linux Foundation provides excellent management and 
insight into how to manage an open source project for consortium members.

Hyperledger Frameworks
As mentioned, Hyperledger has six frameworks at the time of writing. Each framework is a 
blockchain. The Hyperledger consortium of members realized that one blockchain framework 
would not meet the requirements of all its members. The five frameworks ensure its consortium 
members have the features, functions, and other requirements to deploy an appropriate block-
chain for its members’ use cases.

Table 2.2 presents the five blockchains that make up the Hyperledger frameworks. I will focus 
on the Fabric framework, which is a permissioned blockchain that supports channels. Channels 
allow for controlled transactions that are private.

As mentioned, Fabric will be the focus of the book but the other frameworks in the 
Hyperledger blockchain family such as Burrow or Sawtooth will be referenced throughout the 
book mainly as a comparison for use cases.

Hyperledger as an organization empowers its members through the project’s blockchain 
frameworks, tools, and organizational infrastructure. Hyperledger Fabric is by far the most 
widely used of the frameworks. For example, if you go to the Hyperledger GitHub project, you 
will see that Fabric has the most forks. GitHub is a collaborative web-based platform for software 
development projects that use the Git revision control system. Git is the standard for software 
development and is the most widely used platform.

Figure 2.2 shows that Fabric has more than 4,700 forks. A fork is when developers make a 
copy of the repository, which is a good sign since it shows that developers are making changes to 
code, testing the code, or using the code.

It’s clear that Fabric has the most activity as compared to the other frameworks. This is mainly 
because it’s the framework that meets the most use cases. Fabric provides some significant features, 
such as modularity of consensus and encryption key management, but it also supports private 
channels. This book focuses on the power and flexibility of Hyperledger Fabric specifically.

Hyperledger Indy
Hyperledger Indy was created and contributed by the Sovrin Foundation. The Sovrin 
Foundation is a private-sector, international nonprofit that was established intentionally to 
govern the world’s first self-sovereign identity (SSI) network.

Indy is a Hyperledger project made to support independent identities on distributed ledger 
platforms. Indy provides a wide breadth of tools, libraries, and reusable components for providing 
digital identities rooted on blockchains or other distributed ledgers. The benefits are that the digital 
identities provide an interoperable capacity to enterprises across administrative domains, applica-
tions, and any other silos.



introducing thE hypErlEdgEr projEct | 33

The Hyperledger Greenhouse

Permissionable
smart contract
machine (EVM)

Blockchain framework
benchmark platform

As-a-service
deployment

Model and build
blockchain networks

View and explore data
on the blockchain

Ledger
interoperability

Shared Cryptographic
Library

Permissioned
with channel support

WebAssembly-based
project for building

supply chain solutions

Decentralized
identity

Mobile application
focus

Permissioned &
permissionless support;
EVM transaction family

Frameworks

Tools & Libraries

Figure 2.1 
hyperledger approach (linux Foundation)
Graphic courtesy of Linux Foundation



34 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

Hyperledger Iroha
Hyperledger Iroha was created by numerous participating companies, such as Soramitsu, 
Hitachi, NTT Data, and Colu. Iroha is a business blockchain framework specifically designed to 
be efficiently incorporated into mobile projects requiring distributed ledger technology. Iroha 
features a modern, domain-driven C++ design as well as a chain-based Byzantine fault-tolerant 
consensus algorithm called Sumeragi.

Sumeragi uses a permissioned-based server reputation system that calculates the reliability of 
servers based on these three specific factors:

 ◆ The time each server registered with the membership service

 ◆ The number of successful transactions processed by each server

 ◆ Failures detection

Consensus in Sumeragi is performed on individual transactions and on the global state 
resulting from the application of the transaction.

Table 2.2: Blockchains in the hyperledger framework

Framework Application

indy decentralized identity

iroha mobile application focused

sawtooth permissioned and permissionless support; EVm transaction family

Burrow permissionable smart contract machine (EVm)

Fabric permissioned with channel support

grid Web assembly–based project for building supply chain-based solutions

Figure 2.2 
hyperledger Fabric 
github forks



introducing hypErlEdgEr FaBric | 35

Hyperledger Fabric
Hyperledger Fabric was mainly developed by IBM. Fabric is clearly intended as a foundation for 
developing applications or solutions with the modular architecture that enterprises require. 
Hyperledger Fabric allows for essentially a modular approach to components, such as consensus 
and membership services, and leverages containers to host smart contracts called chaincode that 
comprise the application logic of the system.

The permissioned nature of Hyperledger Fabric provides for privacy of operations for the 
participants. The need for privacy does not exclude the need for identification and audit ability 
from regulators. Basically, the encryption of identity (membership) is done in a manner that 
remains “private” from other blockchain participants. Auditing is effectively built in and also 
provides for compliance requirements, which is a major concern for enterprises.

Hyperledger Fabric does not perform mining, although cryptocurrency support is possible via 
chaincode by referencing an off-chain exchange.

Hyperledger Sawtooth
Hyperledger Sawtooth was built by Intel and is closer to a proprietary blockchain than an open 
source blockchain. Sawtooth is a modular platform for building, deploying, and running 
distributed ledgers, and it is considered Hyperledger’s second most widely accepted blockchain 
framework.

Hyperledger Sawtooth includes a varied consensus algorithm called proof of elapsed time 
(PoET), which targets large distributed validator populations with minimal resource consump-
tion. This essentially means that it can target distributed consensus efficiently.

REFERENCE chapter 4 covers poEt in greater detail.

Hyperledger Burrow
Hyperledger Burrow is a permissionable smart contract machine that was the first of its kind 
when it was released in 2014. Burrow’s main value point is that it provides a modular blockchain 
client with a permissioned smart contract interpreter that was built to the specification of the 
Ethereum Virtual Machine (EVM). Burrow was specifically built to be a lightweight, efficient, 
and fast permissioned smart contract machine. Burrow accomplishes this goal by leveraging the 
hardened and speedy Tendermint protocol for consensus working with the Burrow’s Apache- 
licensed EVM.

Smart contracts should perform the same across different blockchains that support smart 
contracts. This is really useful for portability since users can easily start with Hyperledger 
Burrow and over time migrate their smart contracts to another platform.

From this chart, it’s clear that Hyperledger as a portfolio of blockchain frameworks has some 
similar capabilities, but the frameworks have some substantial use case differences between 
them as well.

Introducing Hyperledger Fabric
Hyperledger Fabric has wide acceptance as an enterprise blockchain and is Hyperledger’s most 
active project. The number of developers using the GitHub repository is clearly well above other 
blockchain frameworks in Hyperledger.



36 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

However, I will compare Hyperledger Fabric to Burrow, Sawtooth, Iroha, and Indy since those 
frameworks all have very specific use cases but also have some functionality that overlaps in the 
framework portfolio as well that are worth noting.

Hyperledger Fabric as a project was started by Digital Asset and IBM and has now emerged 
as a collaborative cross-industry venture that is currently hosted by the Linux Foundation. 
Hyperledger Fabric was actually the first blockchain to exit the “Incubation” stage and achieve 
the “Active” stage in March 2017 within the Hyperledger Project.

Hyperledger Fabric is a blockchain implementation that is designed for deploying a modular 
and extensible architecture. It has a modular subsystem design so that different implementations 
can be added over time. The modular architecture of Hyperledger Fabric separates the transac-
tion processing workflow into three different stages, as listed here:

1. Chaincode invocation and initiation where the client application requests access to the 
blockchain network.

2. Transaction processing and ordering, where the transactions are processed in order first 
and then validated.

3. Transaction validation and commitment, where the transactions are validated and then 
committed to the blockchain ledger. The world state is updated as part of this step.

These distinct steps provide multiple benefits to the enterprise such as a reduced number of 
trust levels and verification, which improve network scalability and performance. In other 
blockchains such as Ethereum, transactions are processed differently in the sense that they are 
deterministic, meaning they always yield the same result given the same input and the 
same logic.

Figure 2.3 shows a typical Fabric network structure. As part of the structure you would have a 
client application, organizations, various types of peers, ordering peers, and membership 
services provider.

This figure shows a simple Fabric network setup with different peers, two organizations, and 
a client application. Hyperledger Fabric can scale to hundreds of peers, for example. I will be 
discussing scalability and performance around the enterprise blockchains in much more detail in 
Chapter 3.

Hyperledger Fabric Network For Trade

Endorsing
Peer1

Endorsing
Peer2

Order Service
Node (OSN)

Client

Shipper
Query

Anchor
Peer1

Peer1

Receiver
Query

Blockchain Participants (Users)
•   Shipper
•   Inland Transporter
•   Port/Terminal Operator
•   Customs/Agriculture Authorities
•   Ocean Transporter

CA

Blockchain for Customer docs
Bill of Laden, customs declarations
are written to the ledger

Block 0, 1, 2, 3 = block + chain

MSP

Figure 2.3 
hyperledger 
Fabric overview



introducing hypErlEdgEr FaBric | 37

Hyperledger Fabric Definitions

the following definitions will be useful to know as you read this book:

Block—this is an ordered set of transactions that is cryptographically linked to the preceding 
block(s) on a channel.

Chain—the ledger’s chain is a transaction log structured as a hash-linked block of transactions.

Chaincode—also known as a smart contract, this is code that is invoked by a client application 
external to the blockchain network.

Channel—this is a private blockchain overlay that allows for data isolation and confidentiality.

Consensus—this is a broader term, overarching the entire transactional flow, that serves to 
generate an agreement on the order and to confirm the correctness of the set of transactions 
constituting a block.

Endorsement—this is the process where specific peer nodes execute a chaincode transaction and 
return a proposal response to the client application.

Genesis block—this is the configuration block that initializes the ordering service or serves as 
the first block on a chain.

Gossip protocol—a gossip data-dissemination protocol performs three functions: manages peer 
discovery and channel membership, disseminates ledger data across all peers on the channel, 
and syncs ledger state across all peers on the channel.

State database—data is stored in a state database for efficient reads and queries from chain-
code. hyperledger-supported databases include leveldB and couchdB, depending on 
your use case.

World state—also known as the current state, the world state is a component of the hyperledger 
Fabric ledger. the world state represents the latest values for all keys included in the chain 
transaction log.

source of these definitions: https://hyperledger-fabric.readthedocs.io/en/
release-1.4/glossary.html.

Hyperledger Fabric Ledger
The Hyperledger Fabric ledger is an immutable record of blockchain transactions. State transi-
tions are initiated by chaincode invocations that are transactions. A transaction may also be 
considered a request to update the ledger.

The result of each transaction is a set of asset key-value pairs that are committed to the ledger 
as a create/read/update/delete (CRUD) operation. This is also a transaction log.

A key-value pair is an effective way to represent and identify an asset in the Fabric ledger. For 
example, you would specify a key-value pair that is an asset such as a car whose data is stored in 
the Fabric ledger. The data is stored in a key-value pair.

Here’s an example of a key pair:

'color' : 'purple'



38 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

In this example, “color” is the key, and “purple” is the value of the color. This key-value pair 
is then stored on the ledger, which maintains a record.

Assets are tracked, identified, or updated via a ledger request (transaction) such as a query or 
update. Simply put, the ledger is the actual blockchain. The ledger is a file-based ledger that 
stores serialized blocks. Hyperledger Fabric has some interesting capabilities that are outside the 
standard behavior for a blockchain. For example, the state database can always be rebuilt from 
reprocessing the ledger, and a transaction can be rolled back, for example, if a transaction is 
deemed not valid.

There are currently two options for the state database in Fabric as well. First is an embedded 
database called LevelDB. You can also choose an external CouchDB as another option.

Hyperledger Fabric Ledger has two distinct parts.

 ◆ State data is a representation of the current state of the assets on the blockchain. Asset 
state data can be changed upon changes to the state of the data.

 ◆ Transaction logs record all the transactions in the order they are received that modified the 
state data. Once the data is written to the transaction logs, they are immutable and cannot 
be modified or deleted.

REFERENCE chapter 10, “hands-on Blockchain development,” covers the database options for Fab-
ric in more detail around modular choices, complex queries of the database, and compliance require-
ments to address in the development cycle.

Hyperledger Fabric Consensus
Hyperledger Fabric’s consensus is extensively broad and covers the whole transaction flow from 
start to finish.

In Hyperledger Fabric, nodes and peers can be somewhat confusing since they both have 
several roles. This is in stark contrast to Ethereum, for example, since the roles and tasks of nodes 
participating in reaching consensus are identical to each other. In a nutshell, every node in 
Ethereum does the same thing, but in Hyperledger nodes are very different in their missions on 
the blockchain network.

I discuss Hyperledger nodes in the “Nodes” section later in this chapter.
Consensus algorithms under Hyperledger are pluggable, meaning that users may select the 

algorithm of their choice during deployment.
Hyperledger Fabric 1.4 supports the following consensus methods at the time of writing:

 ◆ Kafka/Zab

 ◆ Raft

 ◆ SOLO

Chapter 4 covers the options for consensus methods for Hyperledger, Ethereum, Corda, 
and Quorum.

Hyperledger Fabric Transactions
Transactions in Hyperledger are requests to the blockchain to execute a function on the ledger. 
The function is implemented by chaincode, which is a decentralized transactional program 



introducing hypErlEdgEr FaBric | 39

running on the validating nodes. Chaincode transactions are time-bounded and configured 
during chaincode deployment, which is similar to a database call or a web service invocation.

If a transaction times out, for example, it is considered as an error and will not cause state 
changes on the blockchain ledger. One chaincode function can call another chaincode function if 
the called function has the same restrictive confidentiality scope. Basically, a confidential 
chaincode can call another confidential chaincode if they share the same group of vali-
dator nodes.

As transactions are run in a new block, a delta from the world state in the last block on the 
blockchain is maintained. A delta is a change in the world state of the blockchain. For example, if 
the last block is block 27000 and there is an update to the ledger, then the world state changes. 
Simply put, a new block equals a new state.

Hyperledger supports two types of transactions.

 ◆ A code-deploying transaction is basically the initialization (Init) function of the blockchain 
application. Init is called when you first deploy your chaincode to the blockchain.

 ◆ A code-invoking transaction is called when you want to call (Invoke) chaincode functions to 
perform transactions on the blockchain. These transactions will be captured as blocks on 
the blockchain effectively.

Hyperledger Fabric is generally considered by the blockchain community as one of the 
simpler platforms for developing applications. This is because of the flexibility of the blockchain 
development support.

REFERENCE in chapter 10, i cover the basics of how to deploy a blockchain smart contract in 
corda, hyperledger, and Ethereum, so please review that text to find out more about smart contracts 
with those blockchains.

Transactions in Hyperledger Fabric have the following workflow. This can be significantly 
different from other blockchains.

1. A transaction proposal that will trigger chaincode is initiated by the client application.

2. The transaction proposal will then transmit to the appropriate peers for endorsement as 
specified in policies.

3. The endorsing peer will execute the chaincode and will write the actual transaction to 
the ledger.

4. The endorsing peer will sign the transaction and return it to the proposer.

When comparing Hyperledger Fabric to Ethereum around the transaction workflow, you 
know that, for example, Ethereum uses the sequential execution style, whereas Hyperledger 
Fabric uses a nonsequential execution style for transactions.

Figure 2.4 shows the contrast between common blockchain transaction execution styles. You 
can see that the two different execution styles vary. For example, one difference between the two 
is that the execute phase is started first non-sequentially. This could provide efficiencies in a 
permissioned blockchain that controls its membership but also could provide a response to the 
requester sooner.

To sum up the Hyperledger Fabric transaction process, the process starts with a transaction 
proposal, which is initiated by a client. A client is a blockchain user with a chaincode application 
requesting access to the blockchain network. Then this transaction proposal is transmitted to the 



40 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

appropriate peers for endorsement as specified by an endorsement policy. An endorsing peer 
executes the chaincode, which results in an actual transaction for the ledger to maintain. The 
client receives the confirmation from the peers/nodes.

In summary, the Fabric network has a clear transaction order that needs to be maintained.
For more information on transactions, refer to the white paper “Hyperledger Fabric: A 

Distributed Operating System for Permissioned Blockchains” (https://www.hyperledger.org/
wp-  content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf).

Hyperledger Fabric Nodes
The concept of a node is common in all blockchain technologies. The node becomes the commu-
nication endpoint in the blockchain technology.

Nodes connect to other nodes, creating a decentralized network. Nodes use a form of a 
peer-to-peer protocol to keep the distributed ledger in sync across the network. In Hyperledger 
Fabric, nodes need a valid certificate to be able to communicate to the network, and the partici-
pants use applications that connect to the network by way of the nodes.

Remember, Hyperledger Fabric is a permissioned blockchain and membership, identity, and 
certificates are validated before transacting on the blockchain. A participant’s identity is not the 
same as a node’s identity and could be an organization. For example, when a participant 
executes or invokes a transaction, their certificate is used for signing that transaction and 
therefore validated as well.

It is important to note that not all nodes in Hyperledger are equal, unlike other blockchains 
where every node maintains a copy of the same ledger. In Hyperledger Fabric, there are three 
distinct types of nodes:

 ◆ Client nodes initiate transactions for the client applications.

 ◆ Peer nodes commit transactions and keep the data in sync across the blockchain ledger.

 ◆ Ordered nodes are the communication backbones and responsible for the distribution of the 
transactions.

Hyperledger Fabric Business Networks
A business network models participants, assets, registries, and transactions. Transaction proces-
sors implement business logic on these elements. Access control lists (ACLs) define privacy and 
sharing settings.

Sequential Execution Style 

Nonsequential Execution Style execute-order-validate

Order Execute State
Update

Execute Order Validate State
Update

Figure 2.4 
comparing blockchain 
execution styles



introducing hypErlEdgEr FaBric | 41

The most efficient way to deploy a Hyperledger Fabric business network model is by using 
Composer Playground, an interactive web tool for testing and deploying business networks. 
Blockchain developers can opt to install it on Docker as well as locally if they choose.

The business network archive  (BNA) is created by using Hyperledger Composer. Composer is 
a tool that allows blockchain developers to package a few different files and generate an archive 
file, which can then be deployed onto a Fabric network. Composer is free for your developers to 
use and has a version that is available on IBM Cloud called Composer Playground.

REFERENCE i discuss the hyperledger Fabric business models in greater detail in chapter 10.

Hyperledger Fabric Chaincode (Smart Contracts)
Chaincode is the term to describe a smart contract in Hyperledger Fabric. Smart contracts are fully 
supported on Hyperledger Fabric, and Golang and JavaScript are supported at the time 
of writing.

Chaincode is application-level code stored on the ledger as part of a Hyperledger transaction. 
These transactions also modify the ledger state, which is known as the world state.

Chaincode is instantiated specifically on a channel or can be installed on several channels. A 
channel is a specific communication path used between peers looking for privacy. For example, if 
you have two channels, you can effectively deploy two versions of the code, and that code will 
not be accessible to the other code from another channel.

Client applications interact with the blockchain ledger through the chaincode methods Init and 
Invoke. The chaincode needs to be installed on every peer that will endorse a transaction and be 
instantiated on the channel. Specifying your membership policies would also be part of this 
chaincode strategy.

When creating chaincode, there are two methods that you will need to implement.

 ◆ Init is initially called when a chaincode receives an instantiate or upgrade transaction.

 ◆ Invoke is called when the invoke transaction is received to process any transaction 
proposals.

If you are developing a blockchain application, you will need to understand that creating both 
an Init method and an Invoke method within your chaincode is important.

REFERENCE i cover more about hyperledger Fabric chaincode development in chapter 10.

Hyperledger Fabric Development Tools
Hyperledger Composer is a development framework that is used for writing a blockchain 
network’s chaincode and also is used for deploying the business network in Hyperledger  
Fabric.

There are two versions of Hyperledger Composer.

 ◆ A downloadable local version, called Composer, that you would install on premises in a 
cloud platform.

 ◆ An online version hosted by IBM Cloud called Hyperledger Playground.



42 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

You can download Hyperledger Fabric Composer from GitHub at https://hyperledger.
github.io/composer/latest/.

You can access Hyperledger Fabric Composer Playground at https:// 
composer-  playground.mybluemix.net/.

REFERENCE chapter 10 covers hyperledger Fabric composer in much more detail, includ-
ing examples.

Figure 2.5 shows the initial login screen to Hyperledger Composer Playground.

Composer Playground is a web-based user interface that you can use to model and test your 
business network. Playground is good for modeling simple proof of concepts, as it uses the 
browser’s local storage to simulate the blockchain network.

However, if you are running a local Fabric runtime and have deployed a network to it, you 
can also access that using Playground. In this case, Playground isn’t simulating the network; it’s 
communicating with the local Fabric runtime directly.

There are REST-based application programming interfaces (APIs) that can be used by client 
applications and that allow you to integrate non blockchain applications in the network. 
Representational State Transfer (REST) technology is an architectural style and services approach 
used in web services development.

There are also two software development kits (SDK) available for Hyperledger Fabric v1.4: 
Java and Node are the supported languages at the time of writing. Other development languages 
such as Python and Go will likely be supported according to the Hyperledger wiki.

SDKs are used to build applications for the blockchain and enable developers to have an 
onramp to the blockchain network to facilitate rapid development.

REFERENCE chapter 10 covers sdks and apis in more detail.

Figure 2.5 
hyperledger Fabric 
composer playground 
web version  
initial screen



introducing r3 corda | 43

Hyperledger Fabric Governance
Because Hyperledger Fabric is a private validator network protocol, all entities are required to 
register with membership services to obtain an identity. This identity provides access and a 
transaction authority on the network. Certificates are issued to members. Two certificates are 
required: enrollment certificates and transaction certificates.

Hyperledger Fabric has permissioning governance built into every layer of the architecture. 
Operations such as starting a new consortium, adding or evicting members, defining a new 
channel, adding and evicting participants from channels all require collecting approval signa-
tures from the appropriate organizations. The overarching policy model is enforced throughout 
the blockchain network.

Hyperledger Fabric has two levels of permissioning, and governance support based on either 
the consortium or the channel. A consortium is a membership-based network services made up 
of the membership of the organization.

Channels are supported as well, providing enhanced privacy or transactions through a 
point-to-point connection. Channels also provide a separate blockchain transaction ledger and 
network services. Chapter 9, “Blockchain Governance, Risk, Compliance (GRC), Privacy, and 
Legal Concerns,” covers governance around Fabric in detail.

Introducing R3 Corda
R3 is an enterprise blockchain software firm being developed by a broad ecosystem of more than 
200 members and partners across multiple industries from both the private and public sectors. 
Corda is an open source blockchain platform, and Corda Enterprise is a commercial version of 
Corda blockchain platform for enterprise usage with Corda support.

The Corda platform was developed in close collaboration with a vast network of financial 
institutions, trade regulators, trade associations, professional services firms, and technology 
companies to leverage the power of blockchain to address specific business challenges. Corda 
was designed to meet the highest standards of one of the most complex and highly regulated 
industries in the world, which is the financial sector.

However, its blockchain services can be applied to other areas of business. Corda allows you 
to build interoperable blockchain networks that transact in strict privacy from other members.

Corda’s smart contract technology (CorDapps) allows businesses to transact directly with 
industry-leading security features. I believe that Corda improves on the traditional custodial 
model that legacy financial services organizations have of acting as intermediary.

For example, it defines a standard approach and format for expressing financial assets and 
liabilities. The following are the main benefits of the enterprise market utilizing R3 Corda.

 ◆ Corda smart contracts can be written in Java and other JVM languages and can accelerate 
the development process for enterprises with in-house expertise.

 ◆ Corda has a flow framework to manage communication and negotiation between network 
participants. This network of participants is communicating via a direct peer-to-peer 
protocol where each node runs the Corda software as well as Corda applications known 
as CorDapps.



44 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

 ◆ Corda has a unique “notary” infrastructure to validate uniqueness and sequencing of 
transactions without global broadcast to all network participants.

 ◆ Corda enables the rapid development and deployment of distributed apps called 
CorDapps. CorDapps take the structure of a set of JAR files containing class definitions 
written in Java and/or Kotlin.

 ◆ Corda was specifically designed to maintain a balance of trade-offs for business problems 
and domain concerns around the financial sector such as scalability and security.

 ◆ Corda has a pluggable consensus, which allows blockchain developers to address trade- 
offs such as performance, scalability, security, and privacy.

The financial sector is one of the most regulated industries not only in the United States but 
also around the world. Handling customer data while dealing with privacy and compliance 
concerns is a burdensome task for these organizations.

R3 Corda handles these challenges with trade-offs that regulated financial institutions may 
find favorable. These trade-offs include the following:

 ◆ Scalability

 ◆ Security

 ◆ Privacy

 ◆ Confidentiality

 ◆ Complexity

 ◆ Performance

 ◆ Compliance

Handling these trade-offs is exactly what R3 Corda was developed to address and does well 
through its structure of CorDapps.

Corda is a strictly engineered shared ledger fabric network for financial services use cases that 
can be deployed within existing legal frameworks and that relies on proven technologies that the 
financial sector depends on. R3 Corda has a strict and well-defined philosophy that can be 
broken down into three categories according to the Corda white paper (https://docs.corda.
net/_static/corda-  introductory-  whitepaper.pdf).

The three categories are:

 ◆ Engineering for the requirements of institutions

 ◆ A focus on nonfunctional requirements

 ◆ Extensibility

There are essentially two direct approaches to deploying a blockchain network with R3 Corda.

 ◆ Corda is the open source blockchain platform, enabling businesses to transact directly and 
in strict privacy, reducing transaction and record-keeping costs and streamlining business 
operations.



introducing r3 corda | 45

 ◆ Corda Enterprise is an enterprise-ready commercial distribution of Corda specifically 
optimized to meet the demands of enterprises.

As shown in Figure 2.6, the stack of Corda is actually quite simple. Corda has two versions: an 
enterprise or open source version with blockchain network services and on top of the stack is 
the CorDapp.

R3 Corda certainly has a niche in the financial and insurance sectors but is expanding its use 
cases, for example, to other sectors. Currently, Corda would not be a good fit for a logistics 
company or a government services organization because of the overhead it would have com-
pared to other blockchains such as Hyperledger. I will discuss more about R3 Corda and its use 
cases in Chapter 8, “Enterprise Blockchain Use Cases.”

Corda Definitions

the following definitions, quoted here from the corda glossary at https://docs.corda.net/
glossary.html, will be useful to know as you read this book:

AMQP—the serialization mechanism used within corda for everything except flow check-
points and rpc.

Artemis—the message queuing middleware used within corda.

CorDapp—corda distributed application (dapp).

Cordformation—a gradle plugin that can be configured via your gradle build scripts to locally 
deploy a set of corda nodes.

Counterparty—the other party in a financial or contract transaction.

Gradle—industry-standard build and deployment tool, used extensively within corda.

Kotlin—the language used to code corda and is fully compatible with any jVm language.

Kryo—the serialization mechanism used within corda for flow checkpoints and rpc.

Input—in corda terms, a state that is used and consumed within a transaction. once consumed, 
it cannot be reused.

JVM—the java virtual machine, which is the “computing machine” that corda is exe-
cuted within.

CorDapps

Corda Enterprise

Corda Network

Corda Open Source (Core Components)

Figure 2.6 
corda stack structure



46 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

Node—a communication point on the corda network and also the provider of the virtual 
machine in which corda runs.

Notary Service—a network service that guarantees that it will only add its signature to transac-
tions if all input states have not been consumed.

Output—in the corda model, a state generated from a transaction (note that multiple outputs 
can be generated from one transaction). they are then used as inputs for subsequent 
transactions.

i’ve listed only the definitions required to understand this book. For additional development- 
specific terms, see the corda glossary.

R3 Corda Blockchain Fundamentals
From a technical perspective, R3 Corda is perhaps the most straightforward enterprise block-
chain to understand. In my experience, there are several reasons for its clear success. The R3 
Corda consortium has clearly defined the features, functions, and use cases with their consor-
tium members. Corda is a platform for blockchain applications for financial enterprises where 
many applications share similarities with an IOU (payment/debt) use case. Corda maintains a 
vendor approach to development, training, and marketing that is well maintained, professional, 
and directed.

Corda documentation is clearly defined and professionally developed but also maintained by 
experts assigned by Corda. Finally, R3 Corda is the only enterprise blockchain to have a demo 
tool, Corda DemoBench.

The Corda DemoBench tool lets you drive transactions in a blockchain. It is useful for 
performing demos and is free to use.

REFERENCE chapter 5, “Enterprise Blockchain sales Engineering,” covers corda demoBench in 
greater detail.

R3 Corda Network
The Corda network is a fully connected “graph” network and does not use a gossip protocol. 
Corda communications actually occur point to point and, therefore there is somewhat less 
network overhead as compared to a gossip protocol, where broadcasts are sent to all network 
peers. Peers use a specific peer-to-peer Advanced Message Queuing Protocol (AMQP). AMQP is 
an open-standard Application layer protocol that is message-oriented and uses TLS for secure 
communications.

For privacy concerns, the peers do not broadcast to all other network peers, but instead they 
direct to the network peer required in the transaction.

NOTE i discuss specific security and encryption topics in chapter 11, “hands-on Blockchain 
security.”

Corda is a permissioned network that is specifically designed to address regulated financial 
institutions’ concerns and is a natural fit for the banking sector, trading sector, and even the 
insurance sector.



introducing r3 corda | 47

Figure 2.7 shows an example of how a Corda blockchain network would be set up with the 
affiliated Corda components. These Corda components are generally easy to plan and deploy. 
The main difference is that Corda has a somewhat different approach to naming components 
such as with a notary or a CorDapp.

Chapter 3, “Architecting Your Enterprise Blockchain,” covers the deployment and architecture 
in more detail.

NOTE “our platform considers non-financial applications to be out of scope.” —r3 corda 
white paper.

R3 Corda Ledger
R3 Corda is a targeted distributed ledger technology (DLT) platform that uses an effective global 
broadcast and gossip network protocol to propagate data to other members in the block-
chain network.

Corda uses a point-to-point messaging protocol (called AMPQ) where the broadcast is 
targeted and is not broadcast to all members on the network. Being that the protocol is point to 
point, only the nodes participating in the transaction will be privileged to the transaction ledger 
activity. This provides the main benefits of privacy to the members.

The Corda ledger has some significant differences from other blockchains that are 
noteworthy.

 ◆ The Corda ledger allows for the management and synchronization of business agreements 
between multiple parties that can be designed as a legal contract. The Corda ledger was 
specifically designed to address interparty contracts that are regulated financial institu-
tions, which other blockchains just cannot address efficiently.

 ◆ There is no centralized ledger operating on behalf of all the nodes on the network, which 
can very different from other blockchains. Instead, each node on the network maintains a 
vault containing all of its known facts. A vault is storage space that maintains a secure area 
for protecting the known facts.

Corda Network Example

Broker

Corda Nodes

Oracle
Service

Issue
Insurance

Policy

Corda Contract Signed

Corda Blockchain Nodes

Bank
Settlement

Actuary
Service Notary Pool

Notary Pool

Figure 2.7 
corda network



48 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

 ◆ The Corda Ledger is subjective from each peer’s perspective, meaning that the ledger will 
be accessed differently by each peer depending on membership participation. What is 
somewhat unique is that not all on-ledger facts have to be shared by each member for all 
the other blockchain network members to view. Think about this as a “need-to-know” 
basis or a “compartmentalized” approach to a blockchain ledger.

R3 Corda Consensus
Corda, as mentioned, is operating as a permissioned blockchain ledger for its financial-sector 
membership. This provides more fine-grained access control to records and enhances privacy for 
its membership. It also fair to assume that a performance benefit is achieved, as only parties 
(nodes) taking part in a transaction have to reach consensus. The transactions are not distributed 
to all other nodes.

Corda allows potentially distrusting parties to reach consensus about the state of a set of 
shared facts. A mechanism is required to ensure all required parties agree on the state of the 
ledger. This capability for Corda to reach consensus is facilitated via a verification consensus or 
uniqueness consensus in Corda. This consensus approach in Corda is remarkably different from 
other blockchains.

Corda consensus is broken into two processes.

 ◆ Transaction validity means that the parties involved can reach certainty that a proposed 
update transaction defining output states is valid by checking that the associated contract 
code runs successfully. It also has all the required signatures and that any transactions to 
which this transaction refers to are also valid.

 ◆ Transaction uniqueness is when the parties can reach certainty that the transaction in 
question is the unique and correct consumer of all its input states. That is, there are no 
other transactions around validity and uniqueness that will consume any of the 
same states.

Parties can agree on transaction validity by independently running the same contract code 
and validation logic.

Corda Notary
A notary is a network service that is unique to Corda. The notary service provides what is 
effectively a uniqueness consensus. One more way to view a notary is that it acts as a trusted 
party that guarantees a particular state is consumed only once. You can think of a state similarly 
to a funding in a wallet in Ethereum or the world state in Hyperledger Fabric.

The notary provides the point of finality in the system and is similar to an intermediary. The 
process a notary goes through to validate uniqueness is called notarization. Parties cannot be sure 
that an equally valid but conflicting transaction is regarded as a valid attempt to spend the given 
input state until the notary signature is obtained.

For example, each state will have an appointed notary and this notary will notarize the 
transaction only if it is the appointed notary of all the transaction’s input states. Simply put, 
notaries are intermediaries who can both block transactions and resolve conflicts.

Corda has pluggable uniqueness services that can improve privacy, scalability, legal-system 
compatibility, and algorithmic agility. For example, a single service may be composed of many 
mutually non-trusting nodes coordinating via a Byzantine fault tolerant algorithm or it could be 
a very simple virtual machine.



introducing r3 corda | 49

These uniqueness services are required only to attest to whether the states consumed by a 
given transaction have previously been consumed; they are not required to attest to the validity 
of the transaction itself, which is a matter for the parties to the transaction.

NOTE corda supports two types of consensus: uniqueness consensus and verification consensus.

What this really means is that the uniqueness services are not required to see the full contents 
of any transactions. This will significantly improve privacy and scalability of the system com-
pared with alternative distributed ledger and blockchain designs. This Corda design decision 
represents an impressive choice as to the acceptable trade-offs in shared ledger architectures.

In short, the point of finality is reached once the notary service signs the transaction. 
However, there can be exceptions. If a transaction has no input states or timestamps, then the 
“uniqueness” of those properties clearly cannot be confirmed nor denied. A notary must be 
assigned to the transaction, but a notary signature is only needed when there are input states 
and/or timestamps.

NOTE remember, there is no central ledger in corda. the ledger is “subjective” from other nodes’ 
perspectives. Essentially, the ledger is distributed but not shared.

R3 Corda Nodes
The Java Virtual Machine (JVM) is used for contract execution and validation in Corda. This JVM 
provides several benefits because of the widespread use of Java and ease of development. The 
main point to realize before developing with the virtual machine is that it has been augmented 
with a customized sandbox that is more restrictive than the ordinary JVM sandbox. This restric-
tive virtual machine enforces security requirements.

In a nutshell, a Corda node is a JVM runtime environment with a unique identity on the 
blockchain network that hosts Corda services and CorDapps.

Corda nodes can have four broad categories of functionality, which can be any of the 
following:

 ◆ Network map provides a way to resolve identities to physical node addresses and 
associated public keys.

 ◆ Notary acts as a “witness” to the transactions and has the final say in whether a transac-
tion is a double-spend.

 ◆ Oracle is an access point that links the ledger to the outside world by providing facts that 
affect the validity of transactions.

 ◆ Regular mode starts protocols communicating with other nodes, notaries, and oracles, and 
evolves their private ledgers on the network.

R3 Corda States
One of the differentiators between other distributed ledger technologies and Corda is how the 
state of blockchain ledger is actually handled. Corda uses the term state to mean a representation 
of immutable objects with shared facts such as an agreement or contract at a specific 
point in time.

The terms shared facts and states can essentially mean the same thing and are generally used 
interchangeably. Let’s clarify what a state can be in Corda from a ledger perspective. A state may 



50 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

represent anything that the member agrees upon, such as a bank note, invoices, and so on at a 
specific time. This is similar to a world state in other blockchains. A static state means that there 
is no change to the representation of the object being defined.

For example, if you are familiar with the financial sector, then you can have states represent-
ing the following:

 ◆ Collateralized debt obligations (CDOs)

 ◆ Collateralized loan obligations (CLOs)

 ◆ Invoices or statements

 ◆ Bank credits

 ◆ Credit default swaps

 ◆ Rate swaps such as interest rates

 ◆ Bonds

Basically, in Corda the state model can be used to represent literally anything that is part of an 
agreement. A state can be used to represent financial instruments or multilateral agreements, 
assets, or liabilities.

Different types of states can contain different attributes. For instance, a trade bond could have a 
coupon date, a redemption date, and so on. States are immutable and therefore cannot be changed 
to another state after created. States contain data about shared facts at a specific point in time.

R3 Corda Transactions
Transactions in R3 Corda are very specific in the sense that it’s clearly defined which command is 
to be issued. For example, in Corda, we would declare intent as “Issue” or “Agree” in a 
CorDapp, and the CorDapp would determine whether the transactions are valid.

Assume your organization wants to declare which type of transaction is being agreed upon. 
When you design a CordApp, you need to identify the type of transactions appropriately.

Transactions in R3 Corda are propagated around the network but are not broadcast to every 
node. The broadcast is verified more on a need-to-know approach. This allows members to 
ensure that they maintain privacy around transactions.

This transaction approach is comparable to channeling in Hyperledger where you have nodes 
in the network that can be placed on a channel to communicate for privacy concerns.

R3 Corda Client Applications
When considering client applications to integrate with R3 Corda in your enterprise, you must 
realize that Java or Kotlin is used for the Corda APIs. This is not exactly a showstopper but 
something to be aware of. Corda, however, does provide a full client library that allows your 
developers to write clients in a JVM-compatible language to interact with the running nodes.

Corda has provided a sample CorDApp for those that would appreciate a tutorial in Corda. 
You can find it at https://docs.corda.net/tutorial-cordapp.html. For community-driven 
applications, visit https://www.corda.net/develop/samples.html.

NOTE chapter 6 covers how to develop blockchain applications in greater detail.



introducing r3 corda | 51

R3 Corda Smart Contracts
In R3 Corda, smart contracts are also referred to as contracts and may be legally enforceable when 
the legal prose has been agreed upon by the participants in the CordApps. Comparatively, in 
Ethereum, a smart contract is a singular program and not an enforceable contract.

In Corda, these contracts are deployed via a CorDapp, which is simply a collection of con-
tracts working together as an application. In Ethereum this is called a distributed application 
(dapp).Realize that these contracts are somewhat different from the smart contracts of other 
blockchain platforms such as Ethereum. In Corda, these contracts are not stateful objects repre-
senting the current state of the world but more like real-world contracts that may have legal 
prose attached as well.

States can contain arbitrary data, allowing them to represent facts such as a stock trades, bank 
notes, or loans, for example.

R3 Corda smart contracts (CordApps) consist of computer code but also can contain legal 
prose that is attached. This is a big differentiator between other blockchains since this feature was 
clearly planned for its members.

Above the smart legal contracts is specific legal prose that are formulated in a way that they 
can be expressed and implemented in smart contract code. The rationale behind this is to give the 
code legitimacy that is affiliated in the associated legal prose.

This specific construct historically has been called a Ricardian contract in the financial sector. 
The Ricardian contract was devised by Ian Grigg in 1996, as a method of recording a document 
as a contract of law and linking it securely to other systems, such as accounting, as an issu-
ance of value.

In the blockchain world, Ricardian contracts are nothing more than digital documents that 
define the detailed terms and conditions of a contract. These contracts are usually signed and 
agreed to by both parties. This Ricardian contract approach is used to mitigate current contract 
issues but also provides clarity to any contract challenges in the future.

To summarize, a CorDapp is a Ricardian contract that is written with the standard legal prose 
that is required in court and then is cryptographically hashed to be available for usage by the 
application. Corda also has an interesting approach that allows a regulatory body to actually be 
given oversight access. This regulatory body can also be brought into the network to act as an 
observer to verify the contract as well (see Figure 2.8).

SettlementCorDapp

Regulatory

Agreement is made and
oversight structured for

settlement

Legal Body

Legal prose is attached
to the smart contract

Corda Smart Contract Legal Prose

Figure 2.8 
corda smart contract 
with legal prose



52 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

NOTE r3 corda was intentionally designed to account for the highly regulated environment of the 
financial services industry.

The following are the benefits of smart contracts (CorDapps) in Corda specifically for financial 
institutions that use Corda:

 ◆ Smart contracts regulate and streamline the workflow between the participating decen-
tralized firms.

 ◆ These CorDapps also include supervisory and regulatory nodes that provide an observer 
responsibility.

 ◆ The consensus algorithms are limited & to the firms involved.

 ◆ Access to the data within an agreement is limited to the permissioned parties involved.

 ◆ The CordApps also validate the transaction solely between the two parties that are 
participating.

R3 Corda Development Tools
R3 Corda, being a private consortium that was built from the ground up to develop enterprise 
blockchains for its consortium members, has a wealth of documentation, tools, and services. 
Corda has a large following of developers, and Corda as an organization provides, in my opinion, 
superior community events that really help drive development.

Corda DemoBench DemoBench is a stand-alone desktop application that makes it easy to 
configure and launch local Corda nodes. It is useful for training sessions, demos, and experi-
mentation. To learn more, visit

https://www.corda.net/discover/demobench.html.

Figure 2.9 shows the starting window after you launch Corda DemoBench. We can configure 
our node and also determine the type of notary in Corda Demobench. After you download 
and install DemoBench, you can start adding nodes and notaries.

Figure 2.9 
corda demoBench 
initial screen



introducing r3 corda | 53

I cover the installation, configuration and walk thru a demo in Chapter 5.

Node Explorer “The Node Explorer provides views to the node’s vault and transaction data 
using Corda’s RPC framework.”

https://ci-artifactory.corda.r3cev.com/artifactory/corda-releases/net/corda/
corda-tools-explorer/3.2-corda/.

Blob Inspector With Corda 3, R3 Corda has guaranteed a wire stable AMQP serialization 
format. As a binary format, it has various advantages over text-based protocols but also has 
the same downside: lack of human readability. The Blob Inspector fills this gap. Given a file 
path or URL, it will display the contents of Corda blobs in YAML or JSON.

You can find documentation for the Blob Inspector here:

https://docs.corda.net/head/blob-inspector.html.

You can download the Blob Inspector from here:

https://ci-  artifactory.corda.r3cev.com/artifactory/corda-  releases/net/corda/
corda-  blob-  inspector/3.2-  corda/corda-  blob-  inspector-  3.2-  corda.jar.

Network Bootstrapper “This is a tool that scans all the node configurations from a common 
directory to generate the network parameters file, which is then copied to all the nodes’ 
directories. It also copies each node’s node-info file to every other node so that they can all be 
visible to each other. You can find the documentation for the Network Bootstrapper here:”

https://docs.corda.net/head/network-bootstrapper.html.

“You can download the latest version from here:”

https://ci-  artifactory.corda.r3cev.com/artifactory/corda-  releases/ 
net/corda/corda-  network-  bootstrapper/3.2-  corda/corda-  network- 
  bootstrapper-  3.2-  corda-  executable.jar.

R3 Corda Governance
Governance in Corda is clearly an important priority because of the nature of its financial sector 
clients where compliance and liability are a great concern to its consortium members.

Corda uses a unique approach to transaction oversight through the use of a notary oversight 
procedure. A notary is considered a trusted party that guarantees that a particular state is 
consumed only once in Corda. This guarantee of state in Corda from the notary eliminates 
challenges such as any double spending issues, over drafting your account, and even can deal 
with currency exchange–based issues.

Notaries are the main blockchain network’s governance structure in a sense because they 
validate the transaction uniqueness and the participation in the network.

In Corda, there is no unified blockchain that contains a record of all the transactions. Corda 
has a different approach where the Corda nodes will see only those transactions in which they 
are directly involved or which they depend on historically for validation purposes.

Lastly, the Corda nodes are responsible for checking transaction correctness and authorizing 
the transactions. The Corda nodes fully rely on notaries to verify the uniqueness of transac-
tions and provide governance of the blockchain, which is a critical part of the governance 
structure.



54 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

Introducing Quorum
Quorum is an open source blockchain solution built by enhancing the existing Ethereum 
blockchain. Quorum is based on the official Go implementation of the Ethereum protocol, which 
provides almost a mirror of Ethereum features and benefits.

Quorum provides an additional layer on top of Ethereum that enables it to perform private 
transactions but also makes it more flexible by using different consensus algorithms. Quorum 
overall was designed as a permissioned implementation of Ethereum that supports the enter-
prise requirements of transaction privacy and contract privacy.

The main use case for Quorum is that it can achieve data privacy through the introduction of 
a new “private” transaction identifier with modifications to the Ethereum codebase. These 
modifications are provided in the Go-Ethereum codebase, which includes modifications to the 
block proposal and validation processes. Data privacy in Quorum is achieved through cryptogra-
phy and also through an intentional segmentation of the nodes similar to sandboxing.

NOTE Quorum is a fork of the Ethereum blockchain.

The main reason an enterprise would choose Quorum over Ethereum is privacy; a secondary 
reason is that Quorum is based on Ethereum, which has a robust and active development base 
making it easy to find expertise.

Quorum supports private transactions and private contracts through public and private state 
segmentation. Quorum supports privacy by using a newer messaging exchange called 
Constellation. Constellation is a peer-to-peer encrypted message exchange used for the targeted 
transfer of private data to network participants. This messaging exchange is similar to what we 
have in Hyperledger with the implementation of Kafka.

Quorum offers options for consensus mechanisms that are considered desirable for a consor-
tium use case. For example, Istanbul Byzantine fault tolerance and a Raft-based consensus are 
two consensus methods that support enterprise features such as fault tolerance and availability.

Quorum Chain is a new consensus that is based on a majority voting and time-based mecha-
nism that supports Ethereum-based transactions that can be propagated through the network.

NOTE i cover these consensus mechanisms in greater detail in chapter 4.

Figure 2.10 shows the high-level components of the Quorum blockchain. You can see that 
there is a Quorum node with Go-Ethereum, which extends the capabilities to the 
Ethereum network.

Constellation is a mechanism for submitting information and allows encrypted communica-
tion between peers. Constellation consists of two parts: a transaction manager and Enclave.

Private Ethereum Network

Client
Apps

Node

Go-Ethereum

Transaction
Manger Enclave

Constellation
Figure 2.10 
Quorum blockchain 
components



introducing Quorum | 55

Permissions at the node level are governed by smart contract code. The main benefit is that it 
provides a higher level of performance compared to the public Ethereum blockchain.

The primary features of Quorum over public Ethereum are as follows:

 ◆ Transaction and contract privacy

 ◆ Multiple voting-based consensus mechanisms

 ◆ Network/peer permissions management

 ◆ Better performance and scalability because of its simple consensus

In Quorum, a transaction has to be either public or private. If the transaction is private, all the 
data within that transaction is private for that set of entities in the blockchain.

In a nutshell, Quorum is open source and more approachable for some organizations than 
implementing a custom private blockchain on other platforms.

Quorum aims to be a platform that allows integration and experimentation with not only the 
financial industry, but also other companies interested in the blockchain technology using a 
proven platform on Ethereum.

Quorum Definitions

like other blockchains and distributed ledgers, Quorum has its own set of terminologies and defini-
tions to learn.

Constellation is a newer general-purpose messaging system for submitting information in a 
secure way. it is comparable to a network of message transfer agents (mtas) where messages 
are encrypted with pgp.

a Quorum node is intentionally designed to be a lightweight fork of go-Ethereum to take advan-
tage of the r&d happening in the ever-growing Ethereum community.

a private contract in Quorum is a contract that was created by a private transaction.

a private transaction is a Quorum transaction that takes a list of public keys that identify the 
parties of the transaction and therefore make the transaction private to those parties.

Sharding basically segments the validation of transactions so that not every node in the network 
is validating every transaction that occurs.

Quorum Blockchain Fundamentals
Quorum is a private/permissioned blockchain platform based on the official Go implementation 
of the Ethereum protocol with an enterprise focus. Quorum was built on top of an existing 
Ethereum blockchain and inherits the maturity of the production-hardened “go-Ethereum” code 
base. Quorum has brought together the public and enterprise development communities on a 
common protocol to work for the financial sectors.

Quorum uses a voting-based consensus algorithm extremely effectively and then achieves 
data privacy through the introduction of a new “private” transaction identifier.

One of the clearly stated design goals of Quorum was to reuse as much existing technology as 
possible from Ethereum to minimize the changes required for Go-Ethereum to work efficiently.



56 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

Strategically, for example, this plan actually reduced the effort required to keep in sync with 
future versions of the public Ethereum codebase. Much of the logic responsible for the additional 
privacy functionality resides in a layer that sits on top of the standard Ethereum protocol layer.

Based on its official description, Quorum is essentially an extension of Ethereum through a 
strategic fork of its code base. The Quorum blockchain has many similarities to Ethereum. 
Quorum has a clear mission to provide the best features of a permissionless blockchain with the 
added privacy, security, and performance of a permissioned blockchain for a targeted audience.

Quorum was developed by J.P. Morgan Chase and its consortium members. Quorum is one of 
the first major steps toward the common adoption of blockchain among financial industries.

Essentially, Quorum functions similarly to Ethereum but has four very significant differences 
or areas to appreciate when compared to native Ethereum.

 ◆ Network and peer permissions management to sandbox transactions on a private 
Ethereum platform

 ◆ Increased transaction and contract privacy through private transactions

 ◆ Voting-based consensus mechanisms not available in Ethereum

 ◆ Higher performance due to limited nodes

Quorum Ledger
This system has two distinct types of possible transactions in Quorum, which are public and 
private transactions. Public transactions are transactions where the payload is fully visible to all 
participants. These publicly viewable transactions are the standard Ethereum transactions you’re 
expecting on the Ethereum blockchain.

Private transactions are different where the payload is visible only to participants whose public 
keys are specified in the privateFor parameter of the transaction.

Quorum Consensus
Consensus in Quorum is somewhat more flexible than other blockchains. For example, Quorum 
offers options for consensus mechanisms that are considered desirable for consortium use cases.

These consensus choices are as follows:

 ◆ Istanbul Byzantine fault tolerance and raft-based consensus are consensus methods that 
support enterprise features such as fault tolerance and availability.

 ◆ Quorum Chain is a newer consensus based on a majority voting and time-based mecha-
nisms that support Ethereum-based transactions that can be propagated through the 
network, for example.

There exists two blockchain states in Quorum. The first state is the public state shared by all 
nodes of public transactions, and the second state is the private state local to each node for the 
private transactions the nodes are authorized for.

Quorum Smart Contracts
As previously mentioned, Quorum is based on Ethereum and is a fork of the Ethereum block-
chain. With that being said, implementing and using Ethereum smart contracts will be quite 
familiar to Ethereum developers.



introducing Quorum | 57

Quorum uses the standard Solidity language for writing smart contracts. This provides 
immense value since you can design as you have been in Ethereum.

One of the differentiators is that smart contracts can be either public or private to one or more 
network participants on the Quorum blockchain network.

NOTE Quorum does not introduce new smart contract types; rather, it introduces a smart contract 
based on the transaction’s type, which is public or private.

The main difference is that with Quorum you can send a private transaction using the 
Ethereum network protocols. In Quorum, you can send a private transaction by coding your 
smart contract to address this requirement for a private transaction.

On a Quorum network you would send a standard Ethereum transaction but set the private-
For parameter on the message to be the public key of the participant that should be able to view 
and execute the transaction or contract code.

Figure 2.11 shows a private transaction in a know your customer (KYC) use case.

For more on this, go to https://github.com/jpmorganchase/quorum/wiki/Using-Quorum.
Private contracts cannot update public contracts. This is intentional, as not all participants will 

be able to execute a private contract. It is important to note that once a contract has been made 
public, the contract cannot be made private later. For a public contract to become private, it 
would need to be deleted from the blockchain and a new private contract would have to 
be created.

REFERENCE smart contract development is discussed in more detail in chapter 10, “hands-on 
Blockchain development.”

Quorum Tools and Utilities
Quorum is based on Ethereum, as we already know, so this allows smart contracts to be built 
with Solidity. Quorum also shares some core development tools with Ethereum. One of those 
tools is Truffle, which is exactly what the majority of Ethereum developers are likely 
using already.

Customer Applies Customer Approved

Customer Bank

Quorum KYC

Authorization Sent

Quorum Tx
Mgr

Request Sent

Blockchain Nodes

KYC is the process of a business identifying and verifying the identity
of its potential clients

Compliance
Node KYC Service

KYC Database

Documents Processed

Records to Blockchain

Private
Ledger

Public
Ledger

Quorum
Node

Quorum
Node

Figure 2.11 
kyc private transaction  
in Quorum



58 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

Essentially, an Ethereum developer will have very little development ramp-up time and 
learning curve for integrating the Quorum blockchain solution due to the use of Ethereum tools 
and utilities.

One tool that was built specifically for Quorum is called Cakeshop. Cakeshop provides an 
easy-to-use graphic interface (GUI) for working with Quorum networks, smart contracts, and 
Quorum APIs. Cakeshop can start up a Geth node, which you can then interact with using the 
Cakeshop front end or can be connected to an Ethereum-like node, such as Quorum, that you 
already have running. The given Cakeshop instance will connect with only one node on the 
blockchain network you specify.

You can download the Cakeshop GUI from https://github.com/jpmorganchase/ 
cakeshop/wiki/Cakeshop- Overview. For more about Quorum development and tools, please 
refer to Chapter 10.

Quorum Governance
Quorum’s permissioned chain is a consortium blockchain and was devised to be implemented 
between participants who are pre-approved by a designated authority.

Because Quorum is a fork of the Ethereum blockchain, governance is not exactly supported 
well. For example, as in Ethereum, a per-node permissioning capability can be set up via smart 
contracts to provide some governance. It is expected, as funding comes from the Enterprise 
Ethereum Alliance (EEA), that governance, compliance, and other enterprise concerns will be 
addressed more in detail.

It’s important to note that the Quorum road map of private transactions and smart contracts is 
on the project list for the development team to work on.

It is also important to note that Quorum has been working with the Zcash team to integrate 
the zero-knowledge security layer (ZSL) into the Quorum protocol. These important and highly 
requested future features could provide some additional benefits around compliance, security, 
and privacy.

Introducing Ethereum
Ethereum is an open source platform based on blockchain technology that enables developers to 
build and deploy decentralized applications (smart contracts).

Ethereum is essentially a world computer that is distributed between thousands of nodes. 
This computer of many distributed nodes is accessible to anyone, anywhere, with Internet access. 
There are no membership requirements to address, and it is truly a public blockchain.

The first public beta prerelease network was known as Olympic. The Olympic network 
provided users with a bug bounty of 25,000 Ethers for stress testing the limits of the Ethereum 
blockchain. Ether is the token utilized for using the Ethereum network.

Ethereum is software running on a network of world computers that ensures that data and 
small computer programs called smart contracts are replicated and processed on all the computers 
on the network, without a central coordinator. The founders’ vision was to create an unstoppable 
censorship-resistant self-sustaining decentralized world computer. For example, if you download 
Ethereum to your computer, it will become an Ethereum “node” on the network, running an 
EVM, and will behave equivalently to all the other nodes.

Note that Ethereum is a peer-to-peer network, and there is no centralization; therefore, all 
computers have equivalent status to other nodes. Figure 2.12 shows the peer-to-peer decentralized 
network of Ethereum. The network nodes for Ethereum run the Ethereum virtual machine. Note 
that the network structure is not flat or hierarchical, like in common networking.



introducing EthErEum | 59

NOTE “When i came up with Ethereum, my first thought was, ‘ok, this thing is too good to be  
true.’ as it turned out, the core Ethereum idea was good, fundamentally, completely sound.” — 
Ethereum inventor, Vitalik Buterin (https://www.genesis-  mining.com/what-  is-   
the-  ethereum-  blockchain).

Ethereum Definitions

like other blockchains and distributed ledgers, Ethereum has its own set of terminologies and 
definitions.

Dapps (decentralized applications) are essentially one or more smart contracts that are working 
together to run an Ethereum application. these applications run on a p2p network of comput-
ers, instead of one computer.

“Ether is the native token of the Ethereum blockchain and is used to pay for transaction fees, 
miner rewards, and other services on the network.”

“Gas is a measurement roughly equivalent to computational steps for Ethereum. Every transac-
tion is required to include a gas limit and a fee that it is willing to pay per gas; miners have the 
choice of including the transaction and collecting the fee or not. Every operation has a gas 
expenditure on an EVm. i will discuss gas in more detail in chapter 3.”

source: https://bigmarketnews.com/crypto-dictionairy/.

Node is a device, program, or virtual machine that communicates with the Ethereum network. 
nodes are also known as clients. a node runs the blockchain services and maintains the ledger.

Ledger

LedgerLedger

Ledger
Ledger

Ethereum Public Network

Dapp

Dapp Dapp

DappDapp

Public Node

Mining
Node

Mining
Node

Mining
Node

Mining
Node

Blockchain Network

Figure 2.12 
Ethereum peer-to-peer 
decentralized network



60 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

Ethereum Blockchain Fundamentals
Ethereum is the blockchain platform, and ether is the token for using the Ethereum virtual 
machines on the Ethereum platform. Ethereum is a permissionless blockchain and has a different 
approach than the other blockchains discussed earlier in the chapter.

While all blockchains have the ability to process code, most of the blockchains are severely 
limited by restrictions. Ethereum approaches code differently by allowing developers to create 
whatever operations they want. This means developers can build thousands of different applica-
tions that go outside the typical blockchain structures.

Ethereum contracts have memory and can also have loops, which I will address in more detail 
from a development perspective in Chapter 10.

NOTE Ethereum is known as the “blockchain of blockchains.”

Ethereum implements smart contracts, which are usually deployed via distributed applica-
tions that are known as dapps. Dapps are applications running directly on the blockchain. They 
are decentralized and not in the control of any one party. Their purpose is clearly to use simple 
logic for peer-to-peer value transfers to extend over to more complicated token structures and 
much more.

These smart contracts and dapps work similarly from an application perspective to any other 
web application. A client application will access an Ethereum application via the HTTP protocol 
through an API. The smart contract will then be invoked and will run on the EVM.

Because the economics and the logic are on the same layer, it makes value transfer extremely 
easy. You can save hardware and configuration by deploying the logic directly on the blockchain.

NOTE Bitcoin is a blockchain 1.0, and Ethereum is a blockchain 2.0.

Ether tokens are created by a schedule that was set by its 2014 presale structure. Ether tokens 
are mined and thus require a miner. For example, 5 ether tokens are created for every block 
mined, which is approximately every 15 seconds. These 5 ether tokens are sent to the miners that 
mine the block. Ether can also be sent to another miner that participates in the transaction since it 
is possible that several miners to compete for the mining of the blocks. Ether is considered the 
“fuel” that runs the Ethereum network.

NOTE Ethereum is the platform. Ether is the cryptocurrency built into the platform.

Proof-of-Work Mining
In proof-of-work (PoW) mining, the miners compete to create valid blocks by spending electricity 
to find solutions to a mathematical puzzle. Ethereum’s PoW math challenge called Ethash works 
slightly differently than Bitcoin’s PoW mining. This allows common hardware to be used for 
mining and lowers the barrier to mining at least from a cost perspective. The downside to this is 
that it reduces the efficiency edge of task-specific hardware known as ASICs, which are common 
in Bitcoin mining.

There is a plan to move from energy-intensive PoW mining to a more energy-efficient 
proof-of-stake protocol called Casper. This was scheduled to start to occur in 2018 and early 2019, 
but was postponed because of several factors. The updated version of the Ethereum software will 
be called Serenity.



introducing EthErEum | 61

Token Standards
In Ethereum, tokens must adhere to token standards, which define a common list of protocols 
that an Ethereum token has to implement. The most common token standard is the 
ERC20 standard.

The ERC20 standard is basically a set of six functions that can be recognized and identified by 
other smart contracts for interactions with the smart contracts. Some of the functions are to get 
the total token supply, get the account balance of the wallet, and so on.

This token standard gives developers the ability to program behavior of new tokens within 
the Ethereum ecosystem. Second, this approach is common with crowdfunding companies via 
initial coin offerings (ICOs). An ICO is a similar concept to an initial public offering (IPO) in 
stock markets.

You can find out more about ether tokens at https://etherscan.io/tokens.

Ethereum Ledger
In Ethereum, consensus is when the distributed ledger has been updated and all nodes maintain 
their own identical copy of the ledger. This architecture allows for a new capacity as a system of 
record-keeping that goes beyond being a simple database. Blocks form a chain by referring to the 
hash or fingerprint of the previous block and are written to the ledger.

Remember that every node in the network holds a copy of the transaction and smart contract 
history of the network. The nodes also keep track of the current “state” on the ledger. Every time 
a user performs some action, all the nodes on the network need to come to agreement that this 
change took place and have it written to the ledger.

For example, every time a program (smart contract application) is used, a network of thou-
sands of computers processes it. Contracts written in a smart contract–specific programming 
language that are compiled into what is called bytecode will be read by the EVM. Then all the 
nodes execute this contract using their EVMs, which in turn update the ledger.

Ethereum Node EVM
The Ethereum Virtual Machine (EVM) is computer software that runs on an abstraction layer 
right above the underlying hardware that is deployed such as a physical server or a container.

Ethereum uses a virtual machine to deploy the blockchain services. This virtual machine type 
is considered a Turing complete virtual machine that will run and compile the code directly. 
Turing complete means the software is agile enough to run any code defined by the developer.  
In the development world, this Turing complete machine is also considered a flexible vir-
tual machine.

Ethereum itself is a protocol defining how the communication should work. It is neither 
proprietary software nor patented. Instead, it is open, and there are several different implementa-
tions of the Ethereum protocol.

Two of the most popular implementations are Go-Ethereum ( Geth), which is written in Go, 
and Parity, which is written in Rust.

Ethereum nodes communicate with each other using the Ethereum protocol. There are several 
different ways to connect to an Ethereum node.

You can connect via HTTP and IPC protocols; WebSocket connections as well may be 
supported.



62 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

The Ethereum node accepts requests in a JSON-RPC format via HTTP. This is a standardized 
way of communicating with Ethereum nodes from clients. Using this approach, any software 
that implements the JSON-RPC calls should be able to connect to the blockchain via an 
Ethereum node.

Here are some important notes about the EVM:

 ◆ The only real limitation the EVM has that a typical Turing complete machine does not is 
that the EVM is intrinsically bound by gas.

 ◆ The power of the EVM is limited only by the amount of gas that is provided by the 
developer request.

 ◆ The EVM is a stack-based VM, meaning that it uses an ordering structure that processes 
last-in, first-out ordering.

 ◆ Flexibility around the development of smart contracts can be in Python, Java, or C++ at 
the time of writing.

 ◆ Isolation is achieved when fully deployed since smart contracts are fully isolated from the 
blockchain network.

Figure 2.13 shows how the EVM fits into the stack.

When joining the Ethereum network, you have some options from a blockchain node 
perspective.

 ◆ Light nodes are nodes that do not verify every block or transaction and do not have a 
copy of the current blockchain state. These nodes are generally used for development.

 ◆ Full nodes verify every block that is broadcast onto the blockchain network. When you set 
up a full node, the full blockchain is also downloaded to that node. This could be signifi-
cant storage space since at the time of writing is more than 180 GB.

 ◆ Archive nodes are full nodes that preserve the entire history of transactions and could be 
used for compliance requirements in some cases.

Ethernode.org displays the current state of network nodes connected to the blockchain. At the 
time of writing, there are more than 13,600 nodes. The site also displays the mainnet and testnet. 
To find out the current Ethereum nodes on the blockchain, visit https://www.ethernodes.org/
network/1.

Wallet Application

Decentralized Application

Swarm Whisper EVM

Distributed Client Hardware

Internet

Ethereum

Figure 2.13 
EVm in the 
Ethereum stack



introducing EthErEum | 63

Ethereum Client Apps
Developing applications to interface with the Ethereum APIs is straightforward. Generally, the 
following front-end development languages are used with Ethereum:

 ◆ HTML

 ◆ CSS

 ◆ JavaScript

The following backend tools are commonly used:

 ◆ Solidity

 ◆ Truffle

You can download Solidity or compile with your browser.

REFERENCE see chapter 10 for more information about these tools.

Solidity
Solidity is the development language behind Ethereum and is specifically designed to utilize the 
EVM. Developers who are working on the Ethereum-based applications will be developing their 
smart contracts in Solidity.

Solidity uses a large number of programming features, concepts, and methods that exist in 
other development languages. For example, Solidity has, as you would expect in a programming 
language, specific variables, functions, classes, and so on.

One common API used with Ethereum is the JSON API, which is a lightweight data- 
interchange format that can represent numbers, strings, ordered sequences of values, and 
collections of name-value pairs.

NOTE “although the Ethereum blockchain is a public blockchain, it is great to see private and con-
sortium blockchains using the Ethereum codebase actively under development.” —Vitalik Buterin, 
Ethereum inventor (http://www.icofestival.de/post_220118.html).

The following are some additional tools and applications used with Ethereum:

 ◆ Languages—Solidity, Serpent, Mutant

 ◆ IDEs—Solidity Browser, Ethereum Studio

 ◆ Clients—Geth, eth, parity, Ethereum Wallet

 ◆ Storage—IPFS, Swarm, and Storj

 ◆ Dapp Browsers—Metamask or Mist

 ◆ Testing—Testnet, TestRPC

Chapter 10 includes more details about these toolsets as well as Solidity.



64 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

Ethereum Transactions
Transactions in Ethereum are the way the external world interacts with the Ethereum network. A 
transaction is used when you want to modify or update the state stored in the Ethereum net-
work. It is important to note that Ethereum is an account-based blockchain implementation, 
which is different from other blockchains such as Hyperledger.

There are two types of accounts used in Ethereum to be aware of from a development 
perspective: an externally owned account (EOA) and a contract account.

An externally owned account is effectively an individual user in the external world  
like a buyer and a seller. This user in the Ethereum network is represented by a 20-byte  
(160- bit) address.

The contract account has some similarities and differences to the EOA. A contract account is 
created by referring to a deployed contract. This contract account is identified by a contract 
address, and an EOA account is still represented by a 20-byte address (160 bit). This is the 
address that interacts with this deployed account.

The contract account can also keep ethers when appropriate to the business logic at hand. The 
contract is the “smart contract” capability in the Ethereum network, which is where the business 
logic is actually implemented.

Figure 2.14 represents the high-level steps an Ethereum transaction takes for a blockchain user 
to authorize and access an Ethereum application. You can see in the diagram that a user is 
initiating a web application hosted on Ethereum, so this is not particularly complex. From a 
technical perspective, this is what would be expected when invoking an Ethereum application 
and would require “ether” to be able to run an application on the Ethereum blockchain. Ether, of 
course, is required to power the EVM through the use of “gas.”

Chapter 4 provides a deeper dive into Ethereum consensus and how transactions are handled 
from a smart contract invocation.

Ethereum Smart Contracts
Smart contracts are contracts that can be converted to code, stored, and reproduced on the 
network nodes. With smart contracts, you can exchange money, shares, property, and anything 
that is valued in a transparent manner without the services of an intermediary. For example, 
through the use of an Ethereum smart contract, you could provide payment for products and 

User goes to website
enters Ethereum

address

Website Request
Authorization

Authorization
presented
to owner

Owner receives
request

Authorization Requested

Owner validates request Challenge Accepted

Ethereum Wallet
transferred Ether

Settlement

Ethereum Authorization Application Workflow

Figure 2.14 
Ethereum authorization 
transaction overview



introducing EthErEum | 65

have an immutable record of the transactions. Smart contracts define the penalties and rules 
surrounding an agreement just like traditional contracts would when properly designed.

When you deploy several smart contracts together as an application, it is known as a distrib-
uted application (a dapp in Ethereum).

Smart contracts in Ethereum provide some significant benefits to the users of the platform, 
including the following:

 ◆ Autonomy

 ◆ Trust

 ◆ Backup

 ◆ Safety

 ◆ Speed

 ◆ Savings

 ◆ Accuracy

The basics of Ethereum state are that all modifications to a contract’s data must be performed 
by its code. Modifying a contract’s data requires a blockchain user to send requests to its code. 
This process kickoff determines whether and how to fulfill those requests. Smart contracts on the 
Ethereum network run on the Ethereum Virtual Machine.

Dapps running on the Ethereum network are basically complex smart contracts. Ethereum 
smart contracts have some properties to be aware of, especially when your development team is 
designing a smart contract for an application. First, Ethereum smart contracts are deployed in an 
automated fashion and can act as a complement to an agreement between two parties.

Second, the terms of the smart contract are to be clearly written in a computer language as a 
set of instructions recorded to an immutable distributed ledger.

Smart contracts when deployed on Ethereum will act as triggered events. For example, when 
a user sends funds of $100 to another Ethereum user to pay for, let’s say, tickets to a concert, these 
tickets will be sent to the buyer only after the $100 is received from the buyer and deposited in 
the seller’s Ethereum wallet. If the $100 is not received from the buyer, then the smart contract 
will not be triggered, and the contract process is stopped.

Figure 2.15 shows the workflow of an Ethereum transaction. There are four main steps to a 
transaction in Ethereum, and each step must be executed properly for the next step to continue. 
Settlement of the transaction can occur only if the execution of the smart contract occurs as 
programmed.

Defined
Contract

Events Execute and
Transfer

Smart Contract Workflow

Transferred
Cash

Settlement

On-Chain or Off-Chain
Settlement

Figure 2.15 
smart contract workflow



66 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

When writing smart contracts in Ethereum, developers use a programming language called 
Solidity. Chapter 10 covers smart contracts and the basics of Solidity in more detail.

NOTE Ethereum is the most efficient and developed platform for decentralized applications.

Essentially, a smart contract in the implementation of Solidity is a collection of code and data 
residing at a specific address on the Ethereum blockchain. Solidity is a programming language 
native to Ethereum that was specifically designed for Ethereum and was released to the develop-
ment community in 2015.

REFERENCE For more on solidity and Ethereum smart contracts, see chapter 10.

Ethereum Wallets
One significant difference between Ethereum and the other enterprise blockchains is the fact that 
Ethereum is a permissionless platform, and it also has a cryptocurrency (token) called ether. As 
mentioned, ether is the token that is used for running your smart contracts on the Ethereum 
platform. To send and receive ether, you need to have a wallet.

A wallet is a program that allows you to gain access to, send, and receive cryptocurrency on 
the blockchain networks. There are several types of Ethereum wallets, including hardware, 
software, and web wallets.

Common Ethereum wallets include MyEtherwallet, Jaxx, and Metamask. You can also go to 
an online exchange, such as Coinbase (which is focused on the US market at the time of writing) 
to get an online wallet (www.coinbase.com).

NOTE “there is nothing that Bitcoin can do that Ethereum can’t. While Ethereum is less battle-
tested, it is moving faster, has better leadership, and has more developer mindshare.” —Fred Erhsam, 
Founder of coinbase.

NOTE this book does not discuss how to buy, sell, or trade cryptocurrencies or tokens. there are 
plenty of other books that focus on the consumer part of the blockchain market.

Ethereum Tools and Utilities
Ethereum has a robust ecosystem of tools and utilities because of its large developer base and 
because it’s the most successful permissionless smart contract blockchain. Finding what you 
need in the Ethereum ecosystem as a developer won’t be an issue.

Let’s review some of the top tools and utilities that are almost required to get going 
on Ethereum.

Mist Browser Wallet (Deprecated) Mist Browser Wallet was used to store ether, send 
transactions, and deploy contracts but has recently been deprecated. Because of the wide 
usage of Mist, it clearly deserves a mention. Historically significant as well is that Mist was 
the first GUI wallet and was clearly the standard token base at the time.

You can download Mist Browser Wallet from https://github.com/ethereum/
mist/releases.



introducing EthErEum | 67

Geth and Eth These are command-line tools for the Ethereum Network. Essentially these 
command-line tools will allow you to connect your Ethereum server to or run your applica-
tion on the Ethereum blockchain. Geth and Eth are two separate command-line tools that can 
run a full Ethereum, public or private, node. Both of these software tools provide multiple 
user interfaces.

You can download the Geth CLI tools from https://www.ethereum.org/cli.

Parity Party is an advanced Ethereum client written in the new low-level language Rust. 
Parity was created by Dr. Gavin Wood, who is the former CTO of Ethereum.

You can download the Parity client from https://www.parity.io/.

Metamask Metamask is a Google Chrome browser extension that allows you to experience 
Ethereum in your browser today.

What is really useful is that it allows you to run Ethereum dapps right in your browser 
without running a full Ethereum node.

Figure 2.16 shows the Metamask interface. You can see that there is an ether balance and that 
there have been some contract interactions. Contract interactions are essentially using the 
EVM on the Ethereum mainnet.

Figure 2.16 
metamask interface



68 | CHAPTER 2 EntErprisE Blockchains: hypErlEdgEr, r3 corda, Quorum, and EthErEum

You can download the Metamask extension from https://metamask.io/.

Truffle Truffle is a well-tested and utilized development environment, testing framework, 
and asset pipeline for blockchains using the EVM.

You can download the Truffle framework from https://truffleframework.com/.
Note that this is not an inclusive list of tools. However, I will be discussing in more detail 

Ethereum tools and development-focused frameworks in Chapter 10.

Ethereum Governance
Enterprise Ethereum clients must superimpose a permissioning layer since it’s based on a 
decentralized platform, which is permissionless. At the time of writing, the Enterprise Ethereum 
Alliance (EEA) is working on version 3.0 of the standard specification where chain-wide permis-
sioning configuration and enforcement will be enabled.

However, a per-node permissioning capability can be set up via implementation through 
smart contracts to provide some governance. Because funding comes from the EEA, it’s expected 
that governance, compliance, and other enterprise concerns will be addressed in more detail at 
the organization’s pace. In a nutshell, if you need strict governance, then you may need to 
consider permissioned blockchains.

Summary
This chapter covered the four most widely used enterprise blockchain platforms and distributed 
ledgers. Enterprise blockchains have different requirements than public permissionless block-
chains such as Ethereum.

Enterprise blockchains generally fall into one of several categories: private permissioned, 
public or permissionless, or even hybrid such as Quorum.

Hyperledger is the umbrella project run by the Linux Foundation, and Hyperledger Fabric is 
the mostly widely used blockchain in the Hyperledger portfolio according to the number of 
GitHub forks.

R3 is an enterprise blockchain software firm working with a broadly targeted ecosystem of 
more than 200 members and partners. These members are across multiple industries from both 
the private and public sectors. R3 has developed Corda, which is an open source blockchain 
platform, and Corda Enterprise, which is a commercial-grade version for enterprise usage 
with support.

Quorum is an open source blockchain solution built by enhancing the existing Ethereum 
blockchain. It provides an additional layer on top of Ethereum, which enables it to perform 
private transactions but also makes it more flexible by using different consensus algorithms. The 
main reason enterprises may want to use Quorum is for the privacy and performance capabilities 
that can easily extend to Ethereum applications.

Ethereum is an open source software platform based on blockchain technology that enables 
blockchain developers to build and deploy decentralized applications (smart contracts). 
Ethereum is clearly the most widely used permissionless smart contract blockchain platform and 
has a wide developer following.

Each of the blockchains discussed have very different technical merits and use cases for the 
enterprise, so consider each one carefully.



This chapter discusses architecting enterprise applications as well as architecting blockchain 
services with enterprise best practices. I also cover enterprise blockchain integration, scalability, 
and security. When architecting a blockchain service, note that your design will be mainly 
focused on an enterprise blockchain. As you know, blockchains are distributed ledgers and flat 
non-SQL databases that scale differently. When compared to traditional relational databases such 
as SQL, blockchains are slower from a performance perspective, which we must consider in our 
use cases.

THIS CHAPTER HAS BEEN BROKEN DOWN TO COVER EACH BLOCK-
CHAIN INDIVIDUALLY AND THUS KEEP CONTINUITY FOR THE READ-
ERS. THE FOLLOWING BLOCKCHAINS ARE COVERED:

 ◆ Hyperledger Fabric

 ◆ Corda

 ◆ Ethereum

 ◆ Quorum

For information about additional blockchains, including Multichain, NEO, and others, please 
refer to the book’s website (www.wiley.com/go/blockchainsolutions) for updated content.

Blockchain Technology Focus Areas
Blockchain technology has the core characteristics of decentralization, accountability, and 
security. These characteristics are important to understand when designing a blockchain service.

Blockchains are used in two main categories of IT solutions, either public permissionless or 
private enterprise permissioned blockchains. Another approach is to combine both private and 
public blockchain services into a hybrid solution. Whether you are working at a private enter-
prise, a federal government agency, or a nonprofit entity considering blockchain ledger technol-
ogy, there may be several viable use cases to consider for a blockchain in your organization. One 
blockchain use case may be a good fit for a nonprofit entity, but that same use case may not be a 
viable use case for a private enterprise.

Architecting Your Enterprise 
Blockchain

Chapter 3

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



70 | CHAPTER 3 Architecting Your enterprise BlockchAin

Blockchain Success Areas
One of the main areas I believe blockchains will succeed in are specific industries that work 
closely together in a collaborative format, such as in a consortium. For example, the insurance 
industry is a big proponent of the blockchain mainly because blockchains allow not only the 
sharing of data but also the sharing of costs, actuary data, and responsibilities such as compli-
ance, and the enablement of their stakeholders. The insurance industry sees blockchains as a 
new business opportunity and even a new business model especially with actuary- 
related services.

Another industry that clearly will be big winners in the blockchain arena are the “financials,” 
such as interbank transfers, currency exchanges, derivatives, or even risk mitigation practices. 
Why? Because there are numerous layers of intermediaries that essentially are considered 
overhead to these financial institutions. I have never been reluctant to state that the financial 
sector will go mainstream with blockchain technology. This is actually starting to happen with 
numerous announcements from JP Morgan, HSBC, Goldman Sachs, and more than 30 large 
international banks announcing blockchain projects. Blockchains will be used as a method for 
cost cutting as well as risk mitigation.

Employees are considered overhead by executives and company shareholders; thus, that 
“burdened” salary is clearly costing the company shareholders. Traditional roles such as corpo-
rate attorneys, accountants, or other intermediaries with routine tasks essentially will be targets 
in the coming years.

One of the main benefits that blockchains can certainly provide through the proper implemen-
tation of smart contracts is cost efficiencies. Smart contracts can reduce mistakes in manual 
processes, reduce fraud, and reduce costs per transaction, while actually providing improved 
customer experiences and meeting compliance requirements.

Figure 3.1 shows an example consortium-based blockchain trading application where the 
seller (exporter) is being paid in Bitcoin and the buyer (importer) is converting USD for trade.

In the scenario shown, the exporter is converting Bitcoin into USD. This cryptocurrency to fiat 
currency conversion could be done efficiently with a smart contract. Note that there would be a 
payment gateway interface as part of a smart contract to exchange Bitcoin for fiat currency such 

Financing Trade with Consortium Blockchain

Blockchain
Contract

Application

Blockchain
Contract

Application

Blockchain can provide a highly efficient and compliant trade system.

Smart
Contract

Smart
Contract

Smart
Contract

Smart
Contract

Exporter Importer

Figure 3.1 
Blockchain trade 
application



Architecting A BlockchAin solution | 71

as USD. This scenario would also provide increased efficiency for trade due to the automation of 
the blockchain, removing the need for costly manual processes. The ledgers would be immutable 
and would also provide immediate compliance adherence due to the blockchain data structure. 
The blockchain architecture allows for the trade information to be sent as digital information, 
which is distributed, rather than copied. This distributed ledger data structure provides transpar-
ency, trust, and data security for the members of the consortium.

Blockchain technology is being used successfully in the financial services industry. Financial 
services companies are using this technology for record-keeping, digital notary services, pay-
ment services, interbank transfers through the use of solid distributed applications, and smart 
contracts.

Blockchain Compliance
Blockchains are excellent for maintaining an immutable history for several reasons whether for 
ensuring compliance such as for Global Data Protection Regulation (GDPR) or for managing a 
chain of trust. The GDPR is a compliance requirement that mandates businesses to protect the 
personal data as well as privacy of European Union (EU) citizens for transactions that occur 
within the EU member states. This law also extends to other countries that have EU citizens as 
customers. Blockchains could be used, for example, for GDPR requirements that can be held on 
the blockchain. Then for facets such as the “right to be forgotten,” a blockchain would not be 
suitable but could be integrated with an off-chain database to adhere to the GDPR requirements. 
Certain data may or may not be appropriate to store even within a permissioned block-
chain network.

For more information on GDPR and other common compliance requirements, refer to 
Chapter 9, “Blockchain Governance, Risk, and Compliance (GRC), Privacy, and Legal Concerns.”

NOTE “Just as the internet made “frictionless commerce” possible by connecting buyers and sellers 
in online marketplaces, blockchains could provide the frictionless fabric for value exchange within 
discrete digital business networks.” —iBM Blockchain services

Lastly, every organization will likely have different business drivers for going to a blockchain 
ledger platform. Whether this business driver is focused on compliance, collaboration, cost 
efficiency, providing digital assets, or providing transparency, as blockchain architects we must 
be able to put these drivers together and match them to a proper blockchain ledger technology 
solution use case and ultimately a working design.

Architecting a Blockchain Solution
One of the first exercises we need to perform is to consider whether we have a strong use case for 
a blockchain. This would seem to be a one-question step. However, there will likely be customers 
who have potential requirements that would be a good use case for a blockchain and then 
perhaps one change in a stakeholder requirement could actually remove that requirement.

My main point is that this exercise of determining whether a use case is valid is not always a 
direct yes or no answer. However, it would likely be easy to determine whether or not you do 
have a solid use case or not after a few initial scoping questions.

Generally, we want to understand what the pillars are for determining a valid use case that 
would be sustainable. Then we want to understand the enterprise architecture it would be 



72 | CHAPTER 3 Architecting Your enterprise BlockchAin

integrated into. Another step may be to walk through a checklist or a questionnaire to address 
detailed information and assign a score to establish validity.

The following section walks you through processes of designing a solution that meets your 
customer requirements.

Blockchain Design Workflow
Having a workflow can certainly provide significant instructions to help facilitate the design of a 
blockchain solution. Blockchain design can be complex, especially when you have compliance 
requirements or detailed use case objectives to meet in your design.

Following is the eight-step blockchain design workflow. Note that it may not be necessary to 
address the blockchain decision score spreadsheet (step 5). If the stakeholders have already 
decided on a specific blockchain platform, then proceeding to design would make sense.

1. Address the stakeholders.

2. Address the use case.

3. Address the blockchain decision tree.

4. Address the enterprise architecture tenets.

5. Address the blockchain decision score spreadsheet.

6. Address the blockchain design.

7. Address the blockchain implementation.

8. Address the blockchain tasking.

Lastly, we want to determine a proper platform that would provide a solid use case that could 
be implemented into the enterprise architecture.

Use Case Potential
When considering whether a blockchain is a strong use case or not, we should review the pillars 
of that potential use case. The more pillars we have checked off, the stronger the use case. For 
example, if a customer does not have a requirement for a distributed and decentralized ledger, 
then our potential use case has been removed.

Several of the more compelling areas of accepting blockchain technology are the financial, 
logistics, and government sectors. These sectors show no signs of slowing down in their accept-
ance of blockchains as well as their investments in the technology.

Blockchain is on the radar for many other organizations and industry verticals no matter what 
may be discussed in the media. The challenge that the enterprise blockchain community has is 
that the enterprise technology is sometimes wrapped up in the same discussion as cryptocurren-
cies and the failed initial coin offerings (ICOs).

Stakeholders
Stakeholders are, of course, a critical area of focus not only from a pre-sale and post-sale perspec-
tive. In a sales-driven environment, it is all about providing stakeholder assurance of trust in the 
technology and the resulting value of the blockchain solution. Discussions around pain points 



Architecting A BlockchAin solution | 73

but also discussions around prospective solutions should be addressed. Note also that stakehold-
ers are generally going to be in one of three categories.

When speaking to technical, business, and legal audiences, we would want to clearly under-
stand and address their concerns and ensure our responses are appropriate. For a technical 
audience, we should focus on implementation, development, and security. For a business 
audience, the focus should be on the value proposition, TTM, TCO, and ROI. For a legal audi-
ence, focus on compliance, privacy, and corporate governance.

Pillars of a Strong Blockchain Use Case
A pillar is a foundational principle or a baseline that supports the use case for even considering a 
blockchain. For example, if the data requirements specified are used by only one organization, 
then the data requirements would not be a strong use case for blockchain technology since a 
single organization would be a great use case.

However, a strong use case would be when you had a consortium requirement, for example, 
that required an immutable shared ledger utilizing smart contracts for international trade.

Figure 3.2 shows the commonly accepted four pillars of blockchain. You can see that the need 
for a ledger is clear and that the ledger really needs to be permanent and distributed. Smart 
contracts need to provide business value, and the blockchain network needs to provide a 
distributed network with no single point of failure.

From the four pillars we can derive that if our use case requires an immutable record store, 
then proceed with considering a blockchain platform. On the other hand, if our use case does not 
require an immutable record store, then we should likely drop the consideration for a blockchain.

DISTRIBUTED
LEDGER

Need to share data
across multiple

companies.

SMART CONTRACTS
INDELIBLE LEDGER

DISTRIBUTED

Need a permanent,
indelible record of

transactions.

Business rules
and data used in

transactions should
be visible to multiple

members.

No central point of
control or ownership
(no shared server).

Figure 3.2 
Four pillars of strong 
blockchain use cases



74 | CHAPTER 3 Architecting Your enterprise BlockchAin

Use Case Perspectives
When considering use cases for an enterprise blockchain, it is imperative to understand that 
there is no single blockchain platform for every use case available. Even though some blockchain 
vendors sometimes will tout they are “cross industry,” you must realize that there are significant 
technical considerations that merit distinction. The reality is that some use cases are viable on 
one or more blockchains. On the other hand, if your use case points toward Ripple, then it’s 
really only a good use case for that distributed ledger because Ripple is a financial-sector 
platform that does not support smart contracts.

When thinking of the blockchain, there are business requirements, technical requirements, 
and even legal or governance requirements. It’s more than possible that a stakeholder’s 
perspective could change or a new government policy such as GDPR could derail a block-
chain project.

The following are two common ways a blockchain project and use case could be derailed:

 ◆ Business requirements could be more focused on TCO or ROI and even time to market. 
Not being able to properly show a favorable TCO or ROI could derail the block-
chain project.

 ◆ Technical considerations are generally more detailed, and the wrong understanding of the 
technical merits could derail the enterprise blockchain project. Integration into current 
enterprise infrastructure could also place challenges on your potential use case.

Legal requirements focus on the compliance, governance, privacy, and legal enforcement 
concerns of blockchains. Compliance requirements such as GDPR have been documented to 
remove the possibility of a successful blockchain project. Privacy concerns such as the right to be 
forgotten may not be met with an immutable solution such as a blockchain.

Blockchain vendors are generally either specialized in one sector such as financials or “cross 
industry,” meaning that they can fit use cases that span industries. For example, Ripple is clearly 
a financial-sector blockchain, while Hyperledger Fabric is a cross-industry blockchain. Because of 
this industry focus, the components may be somewhat different in nomenclature as well as how 
they are implemented. For example, in Corda we have a notary, but in Hyperledger we do not 
have a notary as a component.

Most of the blockchain components are customized for specific use cases, such as consensus 
algorithms, distributed ledgers, pluggable components, encryption methods, and licens-
ing models.

Blockchains are based on an open source approach, and it shows in the blockchain develop-
ment industry. “Tribal” support is more noticeably due because developers are working on 
specific features and feature sets that are “requested” or “sponsored.” In some blockchain 
platforms, features can also be pluggable or modular. This is true especially in some enterprise 
blockchain frameworks such as Hyperledger.

Features that are pluggable or modular allow for some choices to be tested such as consensus 
algorithms. Blockchains that are more flexible in some areas may present themselves as a better 
solution. Use cases need to be established, and the use case can be challenged once there is a 
significant change whether its business, legal, or technically driven.



Architecting A BlockchAin solution | 75

Blockchain Decision Tree
There are significant numbers of blockchain decision trees that have been floated out by the 
academic, corporate, and even governmental agencies. The main focus is to really understand 
your use case and try to determine if the appropriate blockchain decision tree will work in your 
sales organization and your customer base. If your customer base consists of dedicated financial 
companies, you may want a separate decision tree and even checklist for nonfinancial customers.

I like to address decisions that have multiple choices or a decision tree approach to making a 
platform decision. Anything that can give a clear decision around choosing a blockchain plat-
form is excellent.

Figure 3.3 shows a decision tree that represents my personal approach, which should enable 
you to decide between a private, hybrid, or public blockchain. There are two end decisions, and 
we will come to one depending on our requirements. Do we need privacy or not for our transac-
tions? If so, then go with a permissioned blockchain if our transaction will not be public.

When it comes to making decisions for a specific blockchain, I generally like to look at charts 
that show features and functions to get me on the path of determining whether the customer 
should use Hyperledger Fabric or R3 Corda. The decision between two blockchains could be 
based solely on having channels versus not having channels.

Figure 3.4 shows an alternate example of a blockchain decision tree.

Blockchain Decision Path

1

7

6

5

4

3

2

1. Need for a shared common
database?

2. Multiple parties involved?

Blockchain is not
required

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Public Blockchain

3. Parties involved have conflicting
incentives and/or are not trusted?

4. Rules governing participants are
not uniform?

5. Need for an objective,
immutable log?

6. Rules of transactions do not
change frequently?

7. Are transactions public?

Permissioned
Blockchain

Figure 3.3 
Blockchain decision tree



76 | CHAPTER 3 Architecting Your enterprise BlockchAin

Decisions will need to be made based on the following:

 ◆ Databases

 ◆ Trust

 ◆ Third parties

 ◆ Transaction interaction

When following any decision tree, you will want to consider whether it makes sense in your 
use case. One size does not fit all.

Blockchain Decision Checklists
When it comes to making decisions, sometimes a good old Excel spreadsheet can help. When 
considering a spreadsheet, it is advisable to establish a few different versions to address your 
customer base. In reality, there is no one size fits all for blockchain questions, and you would 
want to be creative and address your audience in an appropriate manner.

Should I Use A Blockchain?

Does My Use Case
Involve a Database?

Will There Be Numerous
Users Updating My

Database?

Do These Users
Need to Trust each

Other?

I Should Not Be
Using a

Blockchain.

I Should Be Using
a Centralized

Database.

Are There Problems Caused by
the Use of a Central/Third Party

Entity?

I Should Utilize
Multiple Copies of

Centralized Databases.

Do Transactions Depend
on/Interact with each

Other?

Use a Third
Party/Intermediary.

I Should Be Using a
Blockchain!

Use a Master/Slave
Database.

Yes No

Yes No

Yes No

Yes No

Figure 3.4 
Alternate blockchain 
decision tree



BlockchAin structure And coMponents | 77

Blockchain Structure and Components
Blockchains are structured differently from the traditional architecture of the World Wide Web, 
which uses a more centralized client-server network. The structure and the components of the 
blockchain network will be different and will vary between blockchain solutions.

In the case of the permissionless distributed network of blockchain architecture, each partici-
pant (node or a user) within the network maintains, approves, and updates new entries. The 
system is controlled not only by separate individuals but by everyone within the blockchain 
network. Each member ensures that all records and procedures are in order, which results in data 
validity and security.

Figure 3.5 compares a client-server topology to a P2P topology. This P2P network consists of 
several nodes (computers), and they are running a virtual machine that would have blockchain 
protocols.

For more information on blockchains compared to traditional databases, please refer to 
Chapter 1, “Introduction to Blockchain Technologies”.

Blockchain Structure
The structure of blockchain technology is represented by a list of blocks that are ordered, with 
these blocks represented as transactions in a particular order. These ordered lists can be stored as 
a flat file or in the form of a document database using NoSQL such as Cloud Datastore in Google 
Cloud Platform or DocumentDB in AWS.

There are two important data structures that are used in blockchain, and they are referred to 
as the pointers and the linked lists. The main purpose of this section is to address how a permis-
sionless blockchain might handle a block of data and write to a blockchain. In the individual 
blockchain sections for Hyperledger Fabric, Corda, Ethereum, and Quorum, I will highlight 
specifics as to how these blockchain ledgers address the data structure in more detail. So, take 
these examples as more of a generic structure than a one-size-fits-all kind of structure.

Server

LaptopPC

Smartphone

Client-Server P2P Network

Figure 3.5 
comparing client-server 
topology to 
p2p topology



78 | CHAPTER 3 Architecting Your enterprise BlockchAin

Figure 3.6 shows the relationship between data structures in blockchain ledgers. We can see 
the direct relationship between the pointers and the linked lists in the data structure. When 
considering a blockchain solution, we would want to understand how these data structures are 
handled from a latency perspective, for example. Your blockchain developer would, of course, 
want to be aware of this when developing the blockchain application and connecting to the 
blockchain network.

The blockchain data structure is a back-linked record of blocks of transactions that are ordered 
links. Each block may be recognized by a hash, created utilizing the SHA256 cryptographic hash 
algorithm on the header of the block. Each block will refer to the previous block, which is 
identified as the parent block, in the “previous block hash” field.

The following represents common terminology in distributed ledger technology around the 
blockchain ledger data structure.

The index represents the location of the block on the blockchain ledger and essentially an 
address for locating blocks.

 ◆ The hash is the function that facilitates the rapid classification of data in the dataset that is 
provided in the blockchain ledger.

 ◆ A nonce is a random number that is assigned as part of a hash on the blockchain. Nonces 
provide for increased security in the sense that it can be used only once in a blockchain 
and make it hard to replay the transaction.

 ◆ Pointers are known as hash pointers and are used to build a linked list for the blockchain.

 ◆ A record is the block transaction written to the blockchain and then committed to the 
ledger. These records are considered immutable in most enterprise blockchain ledgers.

 ◆ A timestamp will save the time aspects of when the block was built as well as when it was 
transacted in some enterprise blockchains.

 ◆ A Merkle tree is a summary of the hashing list of the blockchain and provides for the 
efficient verification of the blockchain.

 ◆ A hashing list is descriptive list of hashes of the data blocks in the blockchain.

Figure 3.7 shows the linking of the blocks that create the data structure. We can see that there 
are records. These records are written to the blockchain. The pointers are building the linked list. 

Pointers are variables
that keep

information about
the location of

another variable.

Linked lists are a
sequence of blocks

where each block has
specific data and

links to the following
block with the help

of a pointer.

Figure 3.6 
Blockchain data 
structures



BlockchAin structure And coMponents | 79

Hashing is involved; you should note that each hash points to the previous hash as part of this 
linking. The first block does not contain the pointer since this one is the first in a chain and 
known as the genesis block.

Figure 3.8 shows a detailed blockchain sequence diagram, which is a connected list of records. 
We can see hashing is involved where each hash points to the previous hash as part of this 
linking. The Merkle root is the top part of the Merkle tree. The leaves are data blocks, and the 
nodes further up in the tree are the hashes of their respective children.

There are certainly more concepts around blockchain transactions to understand, but for the 
purpose of this book, the main goal is to provide insight into how these blockchains manage 
transactions. The upcoming sections will provide insight into how Hyperledger Fabric differs, for 
example. From a design perspective, this could affect transactions per second (TPS) if one 
blockchain orders transactions before validating.

Blockchain Core Components
This section covers the main core blockchain components. This list is not specific to any block-
chain platform but more of a vendor-neutral component list. For example, Hyperledger and 
Ethereum have vastly different components in some respects.

Pointer

Head

Pointer

Record 1

Data Data

Pointer

Record 2

Pointer

Record n-1

Data

• • • • •

Data

Null

Record nFigure 3.7 
example of a blockchain 
data structure

Block 1
Header

Hash of previous
Block Header

Block 1
Transactions

Merkle Root

Block 2
Header

Hash of previous
Block Header

Block 2
Transactions

Merkle Root

Block 3
Header

Hash of previous
Block Header

Block 3
Transactions

Merkle Root

Figure 3.8 
Blockchain sequence



80 | CHAPTER 3 Architecting Your enterprise BlockchAin

Nodes are generally virtualized users’ components, applications, or servers within the block-
chain architecture.

 ◆ Transactions are the smallest building block of a blockchain network, and they keep track 
of anything of value that could be currency, goods, documents, and so on.

 ◆ Blocks are part of a data structure that is known as a blockchain ledger. Blocks are similar 
to a page in the book where it is recorded. These blocks are ordered and are what form a 
blockchain.

Chain is a sequence of blocks in a blockchain. The sequence and features of the chain of blocks 
that are supported is determined and maintained by the blockchain protocol.

 ◆ Miners are specific nodes that perform the actual work on a blockchain. They provide 
block validation, ordering, and even record-keeping for the blockchain.

 ◆ Consensus is the method or policy set for the blockchain. Essentially, consensus is how the 
decision is made to update the ledger with transactions that also determines the state of 
the blockchain. Consensus is also referred to as the consensus mechanism or consensus 
agreement in some blockchains.

 ◆ Validity rules (validation) state how the user and the transactions will be validated. This 
validation process sometimes may occur before a transaction is ordered and written to the 
blockchain depending on the blockchain.

 ◆ Smart contracts are the fundamental value where pieces of code can automatically check 
that the terms of the contract have been fully met by the involved third parties. Once the 
terms are validated (consummated), the smart contract code would record it against the 
blockchain ledger and effectively close the contract.

Figure 3.9 shows the general layout of common blockchain components. All these components 
come together to provide a robust blockchain service for the proper use case. When it comes to 
specific components with specific blockchains, there could be other components such as a 
Membership Service Provider, Certificate Authority, Notaries, Oracles, and so on.

Consensus – Nodes agree
on the state of the ledger

Wallet

Blockchain
User

Ledger

Ledger

Ledger Ledger

Dapp

Dapp Dapp

DappDapp

Node

Mining
Node

Mining
Node

Mining
Node

Mining
Node

Blockchain Network

Block 0, 1, 2, 3 = block + chain

Ledger

Figure 3.9 
Blockchain components



enterprise BlockchAin Architectures | 81

Enterprise Blockchain Architectures
Enterprises have strict requirements and therefore tend to choose applications and services that 
support those requirements. Blockchains were not initially developed for enterprise applications 
and were more focused on cryptocurrency transactions. Of course, this has changed with the 
release and the evolution of consortium blockchains such as Hyperledger and R3 Corda that 
have an active corporate user base.

Blockchains also were originally developed as permissionless platforms such as Bitcoin. 
Ethereum came along and expanded upon blockchains as not only a cryptocurrency platform but 
also as a use-case platform or a development platform. Ethereum was designed to be a permis-
sionless blockchain, but now with the advent of channeling and off-chains. Off-chains mean that 
your application is extending out of the enterprise blockchain for a specific purpose such as a 
payment gateway. For example, Ethereum can now be extended to the enterprise for specific use 
cases quite simply and effectively.

When it comes to architecting solutions for blockchains for an enterprise, it is important to 
understand how enterprise architectures have been approached. Consider your current enter-
prise architecture best practices and reference any of the enterprise architecture frameworks.

In some widely accepted enterprise architecture frameworks, there are four pillars or domains 
focused on architecture. The purpose of the enterprise architecture framework domains is to 
guide your organization’s business, information, process, and technology decisions in order to 
enable the organization to execute its business strategy and meet your customer’s requirements.

TOGAF is the most widely used out of the common enterprise frameworks. These frame-
works include ISO, DoDAF, and UPDM. I will focus on TOGAF enterprise domains for this book 
since it’s the most widely accepted and actually can correlate to blockchains as well.

TOGAF Domains
Before diving into blockchain architectures, it makes sense to establish a baseline of what 
enterprise architecture is. The best starting point is to review the TOGAF standard. A baseline in 
enterprise architecture (EA) is a critical point for organizations. Without a baseline, essentially 
business outcomes would not meet the objectives or even work out for that matter.

TOGAF is a well-known acronym for the Open Group Architecture Framework, which was 
developed by the Open Group. The Open Group is a not-for-profit technology industry consor-
tium that continues to update and reiterate the TOGAF enterprise architecture domains. The 
TOGAF standard is the de facto standard for enterprise architecture frameworks. TOGAF 
provides the specific methods, processes, and standards for enabling the acceptance, production, 
use, and maintenance of an enterprise architecture.

The first version of TOGAF, released in 1995, was based on the Technical Architecture 
Framework for Information Management (TAFIM) specification developed by the US 
Department of Defense (DoD).

DoD gave the Open Group explicit permission to create TOGAF by building on TAFIM, and 
TOGAF has been continuously evolving since then.

Essentially, without a framework, connecting corporate enterprise strategy to projects online 
would be challenging. Blockchain projects are more complex because of the lack of knowledge 
and expertise in the area.



82 | CHAPTER 3 Architecting Your enterprise BlockchAin

The four domains of the TOGAF enterprise architecture are as follows:

The business architecture domain states how the enterprise is organizationally structured. 
This domain also provides insight into what functional capabilities are necessary to deliver on 
the business vision.

The application architecture domain provides insight into the enterprise applications and 
relationship to the core business processes of the enterprise.

The data architecture domain provides insight into the structure of an organization’s data 
assets as well as insight into the data management resources available.

The technology architecture domain states the requirements needed to actually implement 
the enterprise applications.

What, Who, and How of Enterprise Architecture
When it comes to architecting solutions, it is important to establish the “what, who, and how” of 
enterprise architectures.

 ◆ What is the organization’s business vision, strategy, and objectives that guide this creation 
of a blockchain service?

 ◆ Who is responsible for executing the defined blockchain services?

 ◆ How are any previously defined business services or capabilities implemented with 
blockchain services?

Simply put, knowing your customers’ history and interests can matter in your block-
chain design.

Tenets
Tenets are organizationally defined rules and guidelines that the organization uses for accom-
plishing its mission.

Figure 3.10 highlights common enterprise architecture tenants that can be used around 
blockchains. When it comes to discussing the enterprise architecture (EA) tenants with your 
customer, you may want to address them by whiteboarding them with the customer. These 
tenants could be valuable in your discussions with stakeholders and may be used in application 
design. The defined tenets should guide application governance and provide concise architec-
tural review. Perhaps they can even enhance your enterprise blockchain adoption performance.

In a nutshell, you should consider approaching a blockchain application as an enterprise 
application. This means determining which enterprise architecture framework makes sense in 
your organization and applying the basic tenets that correlate to the enterprise architecture. The 
blockchain application may or may not be deployed enterprise-wide or even integrated 
enterprise- wide for the initial deployment. Addressing enterprise concerns ahead of time could 
certainly enhance stakeholder acceptance, adoption, and delivery of a blockchain solution.



enterprise BlockchAin Architectures | 83

Blockchain Design
When designing any enterprise blockchain application, it is critical to establish the requirements, 
baselines, features, functions, and scalability of the blockchain that is being evaluated 
or proposed.

From an architecture perspective, you want to consider some of the common permissionless 
blockchain features and determine which features are important to your enterprise when 
evaluating blockchain services.

 ◆ Blockchains are generally decentralized, and thus there are no centralized points of failure, 
at least theoretically. All information transiting through the blockchain is visible to every 
node, and information cannot be removed from the blockchain because of immutability.

 ◆ Blockchains holistically are defined by peer-to-peer networks with peer-to-peer resources 
that are distributed as well as decentralized. Blockchains in their true form are not 
centralized databases.

 ◆ Blockchains are inherently secure due to the security built in with encryption and also can 
enhance privacy and security. They can even enhance compliance requirements for an 
organization.

Assurance of Business
Continuity

Enterprise Agility

Security First

Increase Efficiency

Globally Diverse and
Locally Focused

Blockchain
First

Strategy 

Figure 3.10 
enterprise architec-
ture tenets



84 | CHAPTER 3 Architecting Your enterprise BlockchAin

 ◆ Blockchain networks scale horizontally quite well by adding nodes to the network, but 
blockchains do not scale well vertically due to latency that can be imposed, for example, 
by the virtual machines.

 ◆ Transaction processing is dependent on consensus algorithms such as proof of work, proof 
of stake, or any of the other options you may choose. The choice of consensus and the 
blockchain platform used can have a significant effect on the outcome of the block-
chain services.

Traditionally, enterprises have been focused on the centralized control of resources, and in 
specific regard to blockchain using a permissioned blockchain makes sense where the enterprise 
could benefit from a blockchain.

Enterprise Blockchain Adoption Challenges
As previously mentioned, there are three ways to approach defining a blockchain. Blockchains 
should be defined according to the audience you’re speaking to, and this simple approach can 
help facilitate acceptance and adoption of the blockchain proposal.

During stakeholder meetings, calls, or emails, remember the audience and how to specifically 
address the audience at hand. If you’re speaking to the technical engineering group, then speak 
technically such as “speeds and feeds” of the blockchain. If you are speaking with corporate 
counsel, then use legal jargon when discussing application.

Some challenges for the enterprises around blockchain adoption are focused on the audience 
you’re speaking with.

 ◆ Business challenges can include business costs, funding requirements, corporate govern-
ance, executive vision, stakeholder buy-in, and corporate culture. It’s also reasonable to 
expect a company to react to how competition utilizes the blockchain.

 ◆ Legal challenges can abound, especially in sectors such as finance, insurance, and logistics 
that may not adjust well to the “disintermediation” of financial services. This means that 
trust or acceptance may not be fully realized because of compliance requirements, such as 
PCI, SOX, or GDPR. In the case of GDPR, using a true blockchain solution can be a 
challenge since blockchain nodes may be distributed out of the regulatory body jurisdic-
tion or not centrally managed.

 ◆ Technology challenges can be around performance such as transactions per second (TPS), 
integration with legacy applications, middleware, application stakeholder buy-in, and 
addressing technical issues around privacy and security.

Note that this is not an inclusive list of challenges around enterprise blockchains.

Risk Management
If you work for a government integrator, you may be familiar with the Risk Management 
Framework guidelines specified in NIST 800-37. The Risk Management Framework provides an 
essential connector that integrates both the critical security and risk management activities into 
the system development lifecycle.

This documentation can also be used by nongovernmental organizations to help them 
establish a risk-based approach to security control selection and specification considerations.



enterprise BlockchAin design principles | 85

There are some activities related to managing organizational risk that are critical to an 
effective information security program. What is really useful is that they may be applied to both 
new and legacy systems within the detailed context of the system development lifecycle and the 
Federal Enterprise Architecture. This applies to blockchains as well even though there are no 
current best practices for blockchain in the federal government documented by NIST.

The following are the risk management activities a federal integrator may become 
familiar with:

1. Categorize the system.

2. Select controls.

3. Implement controls.

4. Assess controls.

5. Authorize the system.

6. Monitor controls.

For more information on the NIST Framework, refer to Chapter 9.

Blockchain as a Hammer
Anyone reading posts on LinkedIn, Medium, or Quora may assume that blockchains can solve 
every problem known to man. Some vendors, bloggers, and consultants constantly are shouting 
out that their blockchain solutions are solving epic world problems all the time.

Honestly, blockchain technology is no panacea, and in reality, it seems that blockchain 
technology is a “hammer in search of nails in a sandbox.” Blockchains must be considered as a 
targeted solution and must be effectively focused as a laser.

Lasers are finite tools that directly apply pulses of light that target an expertly focused area. 
One of the challenges that I continually run into is discussing with customers and students why 
their use case may or may not be a good blockchain use case. As a blockchain specialist, you 
must be able to address scenarios where a proposal for a blockchain is not appropriate, whether 
it is because the customer really needs the features of a centralized database, or because there is 
no consortium interest in a blockchain platform.

The lesson learned should be that blockchains are no panacea and we must use blockchain 
solutions effectively in a directly focused manner such as a laser and not as a handyman with a 
hammer in search of a nail.

Enterprise Blockchain Design Principles
When it comes to designing your enterprise blockchain services, there are some key design 
principles, approaches, and even feature requirements to address.

You can certainly use software design approaches that work in your organizations such as ISO 
or Agile to help facilitate known enterprise practices. The reality is that blockchain design, 
development, and deployment are in their infancy.

From that perspective of infancy, I approach blockchains as if I were deploying a cloud 
application. You can expect to accommodate the same level of resources, requirements, and 
specialized expertise in most cases. Deploying a cloud service such as a database on AWS is 



86 | CHAPTER 3 Architecting Your enterprise BlockchAin

similar and different all at the same time than if we were deploying a SQL database on GCP. SQL 
code may import and take the same structure, for example; however, both AWS and GCP 
support different versions of SQL differently.

In a nutshell, design is about bringing the requirements together for a blockchain application 
and placing them on a platform that meets those requirements. This platform can be on your 
enterprise’s local premises or in a cloud provider’s remote data center.

When considering a blockchain architecture for your enterprise, you would want to under-
stand some of the features, benefits, and even trade-offs, listed here:

 ◆ Trust

 ◆ Consistency

 ◆ Availability

 ◆ Security and privacy

 ◆ Performance

 ◆ Compliance

REFERENCE chapter 5, “enterprise Blockchain sales and solutions engineering,” discusses 
blockchain architecture and these features, benefits, and trade-offs to be made around blockchain 
engineering.

Enterprise Blockchain Design Requirements
In Chapter 1 we briefly reviewed aspects of blockchain design. This section builds on the first 
chapter and provides additional insight into making the proper design requirements. Design 
requirements, although fairly baseline in some industries, could be very different in other 
industries. For example, some companies may rate integrity higher on the requirements list than 
consistency. Understanding your customer design as well as enterprise architecture tenets, use 
cases, and pain points should help come to a solid blockchain architecture.

Design for Integrity (Immutability)
Integrity can mean several things to different organizations, so let’s clarify that integrity can also 
infer “trust” due to the immutability properties of the blockchain ledger. Immutability in the 
world of the blockchain really means that once something has been written to the blockchain, it 
cannot be modified, deleted, or tampered with by anyone or anything. On the other hand, we 
know that databases are centralized, whereas the blockchain is a truth agent that is decentralized.

When considering blockchain technologies, it is important to realize that the main reason 
blockchains were developed was centered around the lack of trust in legacy institutions such as 
banks and government institutions.

When designing a blockchain, it’s critical to consider the user and enterprise requirements. 
Maintaining user trust is critical to the design and your customer’s business. Organizations in 
industries from the financial sector to the defense industry rely on trust.



enterprise BlockchAin design principles | 87

Design for Consistency
When considering the enterprise user experience, it is important to appreciate how the end user 
is accessing the blockchain application. You can likely approach this by understanding how the 
rest of the enterprise approaches enterprise application development for their legacy application. 
Providing a solid workflow for the users of the blockchain application would certainly help the 
adoption of these blockchain services.

Consistency should be focused not only on the application development but also on the user 
experience (UE). Blockchain application users should understand how the solutions work at least 
at a high level, which is more of a process level than a transactional level. Provide an experience 
that the users will want to participate in. In Chapter 10, “Blockchain Development and 
Programming,” we discuss areas of usability, consistency, and trust, all of which are critical part 
of the application experience for the users.

Design for Availability
Enterprises require a level of resilience where the blockchain networks should assume that 
failures are bound to happen. The enterprise must be prepared to keep the blockchain networks 
running during these situations.

High availability (resilience) requirements may vary by an enterprise vertical or line of 
business, blockchain application requirements, project funding, and many other factors based on 
the enterprise needs.

Enterprises should approach blockchain availability the same way that traditional enterprise 
applications handle redundancy. They often utilize service replication and redundancy to make 
sure that they stay available.

Enterprise blockchains need to deploy redundant peer nodes and clustered ordering services 
and also replicate other working blockchain network components to work seamlessly without 
any hindrances to blockchain application availability.

Design for Security and Privacy
Privacy and security concerns in the enterprise are no real surprise to enterprise architects. When 
designing your blockchain applications, it is recommended you approach privacy and security 
concerns with caution when anything is connected to a public network or even a private network 
that you may not control.

The need for enterprise-level blockchains is even greater than perhaps early on since enter-
prises generally deployed their blockchains in a private instance away from public networks. 
However, there are now more options that have been presented such as channels, off-chains, 
oracles, and the expanding new possibilities presented by blockchain, so it is imperative that 
companies get security and privacy correct.

Why? Blockchains are connected to a network whether or not it’s a private or public network. 
Chances are that the network is generally connected to the Internet like just about every network 
I am familiar with. The one exception where a network is not connected to the Internet is in the 
case of a government classified Secret or Top-Secret network.

Connecting your network to the Internet will expose your network to possible exploits 
whether or not you have the most updated network security posture.



88 | CHAPTER 3 Architecting Your enterprise BlockchAin

Most companies should not want an exposure such as the far-reaching Equifax breach 
occurring on their enterprise network or blockchain.

NOTE “the equifax breach occurred due to hackers who had used an Apache struts vulnerability, a 
months-old issue that equifax knew about but failed to fix and gained access to login credentials for 
three servers. they found that those credentials allowed them to access another 48 servers containing 
personal information.” —Alfred ng, cnet (https://www.cnet.com/news/equifaxs- 
   hack-   one-   year-   later-   a-   look-   back-   at-   how-   it-   happened-   and-   whats-   changed/)

The Equifax hack exposed vulnerabilities but also the lack of responsibility companies 
routinely have around company data, which in turn is actually personal data. This is important 
especially because the confidence, trust, and reputation a company has essentially can be 
devastated by a lack of responsibility.

It is fair to say that data exposure with blockchain services should be considered just as risky 
as any Internet-based applications. That is, blockchains run on servers—specifically, Linux 
servers that contain open source software and those are the same servers that power the Internet. 
Anyone remotely familiar with Linux or Docker containers has the base knowledge to look for 
vulnerabilities.

Digital identity is a concept in blockchain that could aid in the critical area of data privacy. 
Using specific digital identities could aid in the evolution of enterprise-grade protection on the 
blockchain.

The blockchain can also provide privacy without secrecy in another important way: through 
smart contracts. Put simply, a smart contract is logic that is programmed to ensure that if certain 
conditions are met by the requests that something particular will happen, such as a blockchain 
transaction, a message event being triggered, or funds being sent as a result of a contract signed.

Since these are permissioned blockchains used by most enterprises using blockchains, all 
members must be known entities that are carefully vetted before they enter the enterprises 
membership ecosystem.

Permissioned blockchains will have specific restrictions regarding who can actually partici-
pate in the blockchain. Access for new participants is handled in specific scenarios by specific 
conditions being met such as being provisioned by a membership certificate or transaction 
certification or being enabled by a policy.

The following are common schemes used in enterprise blockchains to grant membership to a 
blockchain network:

 ◆ Company employees or partners enrolled through the use of directory services such as 
LDAP or AD (directory services).

 ◆ A consortium of companies that agree to participate in a membership schema that is 
funded by the member companies directly (membership fees). For example, an insurance 
consortium that shares actuary data between insurance consortium members.

 ◆ Consumers granted access for reasons such as enrollment, employment, or being a 
consumer of the enterprise.

 ◆ Regulators that are part of a government entity, trade association, or other regulatory body 
that needs to provide oversight in compliance areas such as SOX, GDPR, AML, or KYC.



enterprise BlockchAin design principles | 89

NOTE “Blockchain ensures that everyone’s private information will be owned by the user them-
selves. the data is protected by the technology, thus ensuring that no sensitive personal data will 
ever be leaked.” —eric gu, ceo and founder of Metaverse (https://www.coinspeaker.com/
blockchain-   technology-   the-   ultimate-   data-   privacy-   solution/)

During the course of this book, I will be diving deep into the area of privacy and security 
concerns specifically related to enterprise blockchains. Security focused examples as well as 
designs are presented in the Chapter 11, “Blockchain Security and Threat Landscape.”

Design for Performance
Blockchain performance is clearly a highly focused area where there is much debate on whether 
blockchains can scale to the levels we can attain with a traditional centralized database. The 
reality is that blockchains were never built or even considered for high performance. Blockchains 
were built for security, privacy, and immutability on a network that is decentralized as well as 
distributed.

Blockchains are inherently slow and should not be compared to platforms such as Visa, 
SWIFT, or PayPal. Blockchains are being developed that will scale somewhat closer to Visa, but 
in reality, they would not be a blockchain but more of a Hashgraph.

However, the use case for competing with Visa for a higher number of transactions is really 
not there at this time when properly scoped use cases are considered.

Permissioned blockchains can certainly scale greater than permissionless blockchains because 
the number of nodes is controlled (permissioned) and the network node distribution is con-
trolled as well.

Comparing a centralized application to a decentralized application is not exactly comparing 
“apples to apples.” It would not be fair to expect blockchains to compete in TPS with a legacy 
application due to its significantly different architecture.

Design for Trust
Just because you have a blockchain solution won’t likely mean that people will immediately trust 
the systems, data, or processes. When designing a blockchain, you should consider your user 
base and appreciate that trust is more than a word; it’s a feeling and an experience.

As an architect and developer, I generally want to verify that the processes are actually 
working as planned as well as that the data is sanitary. Sanitary means that the data has not been 
compromised, data is secure, and transactions are kept private as specified if required.

NOTE “Just because blockchain technology is built to eliminate the reliance on trust doesn’t mean 
users will trust the machine or network.” —Jonny howle, uX/ui designer

Design for Compliance
From a privacy compliance perspective, it matters greatly whether the blockchain is generally 
accessible or accessible only to users who are members of a closed group.

For instance, privacy concerns may influence the assessment of whether data is transferred to 
countries that do not ensure adequate protection. For example, in the European Union there is a 
fairly new standard to meet called the General Data Protection Regulation (GDPR).



90 | CHAPTER 3 Architecting Your enterprise BlockchAin

This marvel of a compliance structure is a legal framework that clearly defines guidelines for 
the collection and processing of personal information from individuals who live in the European 
Union (EU).

These EU regulations apply to every business regardless of where websites are based. The 
regulation must be applied by all sites that attract European visitors, with no exception, even if 
they don’t specifically market goods or services to EU residents.

For more information about the GDPR, see https://www.bloomberg.com/news/
articles/2018-  03-  22/is-  your-  blockchain-  business-  doomed.

NOTE “some blockchains, as currently designed, are incompatible with the gdpr.” —Michèle Finck, 
lecturer in eu, oxford university

In addition, it is possible that each party to the blockchain network has specific access only to 
part of the information stored via the blockchain and not off-chain. Each party has its own copy 
of the entire blockchain that is effectively restricted by encryption. Depending on how a block-
chain is deployed, it may or may not meet compliance requirements that the enterprise needs to 
consider. Design for node locations, networking infrastructure, and enterprise integration all 
need to be considered. In Chapter 9, I cover GDPR extensively around blockchain- 
related concerns.

Other Concerns—Deployment Model
Blockchains can be hosted on-site in the enterprise architecture, in a shared model such as cloud 
computing Blockchain-as-a-service (BaaS) models, or in a managed service hosted, for example, 
with a VAR.

BaaS is a newer solution that has started to provide enterprises with options for deploying 
their blockchains for developing and testing and can be used for a proof of concept.

If you are deploying a blockchain in your own data center, then you already have a good idea 
of the costs of that data center space, upkeep, and procedures to consider. Most blockchains are 
deployed on various versions of Linux-based servers and virtual machines. Linux is the best- 
known and most-used open source operating system.

When it comes to deploying Linux in your enterprise, there is no shortage of expertise 
available. The challenge will be on deploying your blockchain and the client applications that 
connect your blockchain networks. One area of expertise shortages is commonly around middle-
ware, which acts as a translator from a legacy application to a blockchain application. During the 
course of this book, I will be discussing this in detail around both planning and deploying 
blockchain applications both on-premises and in the cloud.

Hyperledger Fabric
This section covers Hyperledger Fabric, a permissioned cross-industry blockchain that has a 
pluggable framework. The following topics are covered:

 ◆ Hyperledger Fabric selling points

 ◆ Hyperledger Fabric design considerations

 ◆ Hyperledger Fabric design example architecture



hYperledger FABric | 91

Other than Ethereum, Hperledger Fabric is by far the most widely covered, discussed, and 
accepted blockchain platform. Finding information on Hyperledger Fabric will likely be fairly 
easy for whatever your project is because of its wide acceptance.

The global collaboration, hosted by The Linux Foundation, includes global leaders in aero-
nautics, finance and banking, healthcare, Internet of Things (IoT), supply chain, manufacturing, 
and technology. It currently boasts more than 222 members, and many of these members are 
actually competitors of each other.

So, what does Hyperledger Fabric actually do so well, and why does it have such great 
acceptance? Hyperledger has been enterprise focused from its inception as a consortium. 
Consortium members play a critical role in the development, planning, and implementation of 
its blockchain frameworks.

Hyperledger Fabric’s Main Selling Points
Hyperledger Fabric has several selling points, and these usually follow your design, meaning 
that you can choose to implement it as required.

 ◆ Modularity, which is perhaps Hyperledger Fabric’s main selling point.

 ◆ Wide acceptance of Hyperledger Fabric from a cross-industry perspective

 ◆ Privacy through implementation of channels that partition the blockchain network and 
create a separate ledger

 ◆ Scalability and performance due to the ability to scale on demand

Hyperledger Fabric’s Blockchain Design Considerations
Hyperledger Fabric was intended for developing solutions with a modular architecture. 
Hyperledger allows the components to be essentially plug-and-play.

Hyperledger Fabric is a private and permissioned blockchain system and therefore needs to 
be designed differently. We would need to account for additional nodes, policies, a certificate 
authority (CA), and a membership services provider (MSP).

Hyperledger Fabric also offers a distinct approach to enable privacy through the use of 
channels. Channels allow for a group of participants to create a separate ledger of transactions 
and also maintain privacy. Hyperledger Fabric currently supports two database options for 
different use cases. The two current database options are CouchDB and LevelDB for storing the 
world state of the blockchain.

Hyperledger Fabric’s Advantages
Since Hyperledger Fabric is a permissioned blockchain, it has some major advantages over other 
blockchain systems.

Permissioned Membership Permissioning a blockchain clearly provides advantages of 
security, privacy, and even performance of the blockchain. Permissioned blockchains such as 
Fabric can also provide benefits around compliance requirements when properly designed.

Performance and Trust Fabric is a modular platform and can enable greater flexibility for an 
enterprise around transaction processing Data on Demand.



92 | CHAPTER 3 Architecting Your enterprise BlockchAin

Ledger data is clearly maintained and can easily be queried for compliance reasons, data 
analytics, and even security analysis.

Historical Queries The ledger has been designed for transaction queries, and the choice of 
databases can enable deeper insight. With CouchDB you can run a complex query and gain 
deeper insights into your data.

Modularity Hyperledger provides the options for your enterprise blockchain to be as close 
to a plug-and-play model as a blockchain can be. You have the ability to choose the CA, HSM, 
consensus method, and APIs.

Hardware Security Module (HSM) Identity and Access Management flexibility is achieved 
with Hyperledger Fabric through the implementation of different key management options. 
Choosing your HSM can provide significant enhancements in your enterprise’s security  
stance.

The following are the key features of Hyperledger Fabric that fulfill its promise as a customiz-
able enterprise blockchain. It is important to understand these terms since the design example 
architecture will reference them.

 ◆ Assets are whatever is actually traded on the blockchain that is valuable.

 ◆ Chaincode is another name coined by IBM for a smart contract.

 ◆ Ledger features provide flexibility around ledger queries and distinct ledger privacy 
measures through channels.

 ◆ Channels enable private transactions between two parties and through channels enable a 
separate channel specific ledger.

 ◆ Security and membership services provide for access to the blockchain and full auditing  
capacity.

 ◆ Consensus choices are available for implementation, which allows for different  
performance, security, and privacy measures as part of reaching an agreement.

Reference Architecture
Hyperledger Fabric has a well-referenced architecture. It clearly defines the four specific areas of 
design: Identity, Ledger and Transactions, Smart Contracts and APIs, and Events and SDKs.

The architecture is modular and allows the blockchain designer to determine specific modules 
in the design such as consensus, certificate management, and even the database option for 
the ledger.

Figure 3.11 references the Hyperledger Reference Architecture.
In the Hyperledger Reference Architecture you can see there are distinct modules. The current 

architecture separates the trust assumptions for chaincodes. What this means is that your policy 
creation capacity is really based on how you decide the ordering service handles blockchain 
transactions. Ordering nodes are commonly referred to as an ordering service node (OSN). 
Hyperledger Fabric provides for different network roles based on the type of peer node 
deployed. Consensus modularity is also apparent and allows pluggable consensus implementa-
tions for your enterprise. It is important to note that you cannot change the consensus after you 
deploy your ordering service.



hYperledger FABric | 93

NOTE For more information on the hyperledger Fabric reference Architecture, refer to https://
hyperledger-  fabric.readthedocs.io/en/release-  1.4/architecture.html.

Organizations
Hyperledger Fabric from a design perspective requires planning for organizations. An organiza-
tion is a membership-driven security domain and is considered a unit of identity and credentials.

An organization governs one or more network peers and depends on a membership service 
provider to issue identities and certificates for the peers as well as clients for smart contract 
access privileges. There is also a node that is referenced as an ordering service, which is the 
cornerstone of a Fabric network, and is typically assigned its own organization.

Figure 3.12 shows a high-level organization overview. Org1 is the exporter, and Org2 is the 
importer. Both organizations agreed on the terms, and Org1 has sent the clothing to the United 
States. As part of the importing process, a customs declaration must be recorded. After the 
transaction has been declared and authorized, the transaction is recorded on the blockchain.

Enrollment

Attributes

Reference Architecture

Membership
Services

IDENTITY

APIs, Events, SDKs

LEDGER TRANSACTIONS

Consensus Services

Distributed
Ledger

Network
Protocol

Ordering
Service

Endorsement
Validation

Security and Crypto Services

Chain-code
Services

Secure
Container

Secure
Registry

Distributed Ledger Technology Services

SMART
CONTRACT

IDENTITY
Pluggable, Membership, Privacy,
and Auditability of transactions

LEDGER | TRANSACTIONS
Distributed transactional ledger
whose state is updated by
consensus of stakeholders

SMART CONTRACT
“Programmable Ledger,” provides
ability to run business logic against
the blockchain (aka smart contract)

APIs, Events, SDKs
Multi-language native SDKs allow
developers to write DLT apps

Figure 3.11 
hyperledger reference 
Architecture

Hyperledger Fabric Overview

Exporter
Org1

Importer
Org2

Hyperledger Fabric used for tracking US Customs declarations

Exporter Importer

Clothing Shipped Chaincode Chaincode

Blockchain Nodes

Customs Declaration

Clothing Received

Figure 3.12 
organizations in a 
hyperledger Fabric 
blockchain



94 | CHAPTER 3 Architecting Your enterprise BlockchAin

In Hyperledger Fabric, the network nodes need a valid certificate to be able to communicate 
to other nodes on the network. The network participants use a client application that connects to 
the network by way of the network nodes. Hyperledger is a permissioned blockchain, and the 
participant’s identity is not the same as the node’s identity. When a participant executes or 
invokes a transaction, their certificate is used for signing that transaction.

In Hyperledger, there is the concept of nodes, and all nodes are not equal. There are three 
distinct types of nodes.

 ◆ Client nodes will initiate the blockchain transactions and will represent the end user 
through the transaction process.

 ◆ Peer nodes are nodes that actually commit transactions and keep the data in sync across the 
ledger. Peer nodes are the nodes that maintain the state and copy of a shared ledger. Peers 
are authenticated by certificates issued by the MSP. In Hyperledger Fabric, there are three 
specific types of peer nodes that can be deployed. The type of peer node deployed 
depends upon the assigned roles such as a peer, an endorsing peer, or an ordering peer.

 ◆ Ordered nodes are the communications backbone and are responsible for the distribution of 
the transactions.

Privacy
For privacy, a “channel” could be used between two members of the blockchain network. A 
channel is a private blockchain overlay that allows for data isolation and confidentiality. Note 
that a channel-specific ledger is shared only across the peers in the specific channel.

Figure 3.13 references a simple example of what a channel would accomplish. Three partici-
pants are in the blockchain network. Participants A and C create a channel to ensure privacy 
from the rest of the blockchain, leaving out participant B. This direct method removes the 
propagation of a transaction from the rest of the blockchain network, and this is how privacy is 
handled in Hyperledger Fabric.

User A

User BUser C

Privacy Channel

Figure 3.13 
A channel in 
hyperledger Fabric



hYperledger FABric | 95

The Hyperledger Fabric framework is implemented in Go. The Hyperledger Framework was 
made specifically for enabling Hyperledger Consortium blockchains with different degrees of 
permissions, use cases, and integration capacity. Fabric uses smart contracts called chaincode. This 
chaincode is installed on any nodes that will be operating the chaincode. These peers of the 
blockchain networks run in a locked-down Docker containerized environment.

Figure 3.14 illustrates a typical Hyperledger Fabric peer network structure with clients, 
peers, MSPs, and logical organization groupings. The end user will be invoking a blockchain 
application, which in turn “invokes” an API call, which will invoke chaincode, which is a 
smart contract.

Ledger Database Options
Fabric Ledger has two parts to its structure, which is very different from other blockchains.

 ◆ State data is a representation of the current state of the assets. Asset state data can be 
changed upon changes to the state of the data.

 ◆ Transaction logs record all of the transactions (in the order they are received), which 
modifies the state data, and once the data is written, it is immutable and cannot 
be modified.

You have two choices in Hyperledger Fabric when it comes to the database for your ledger: 
LevelDB or CouchDB.

The main reason to choose one database over another is if your requirements need complex 
queries for binary data. The ledger system in Hyperledger Fabric uses LevelDB. By definition, 
LevelDB allows concurrent writers to safely insert data into the database by providing internal 
synchronization. State database options include LevelDB and CouchDB.

Table 3.1 displays the options for the Hyperledger Fabric ledger. There are two choices for the 
state database. However, LevelDB is available only for the transaction logs. Transaction logs are 
also immutable and allow only create and read operations.

Le
dg

er

Peer

Peer

Le
dg

er

Ledger Peer

Le
dg

er

Peer

Peer

Peer

Le
dg

erValidating Entities

Permission
Issuer

Transaction
(Invoking Contracts)

End-User
Bob

Fabric
Client

Fabric
Client

Transaction
(Defining Contracts)

Ledger

Ledger

Application
Alice

Figure 3.14 
hyperledger architec-
ture structure



96 | CHAPTER 3 Architecting Your enterprise BlockchAin

Hyperledger Fabric’s Design Example Architectures
The following example architectures are meant to provide insight into a customer request 
scenario for Hyperledger Fabric that a presales consultant may run into. There are likely many 
different solutions that could be scoped and designed based on the requirements.

Health Care Privacy–Focused Blockchain Scenario
A customer has asked your IT integration company to design a blockchain network for their 
customer base, which are health care customers. Health care privacy is, of course, a significant 
requirement. The customer has also stated the customers are mainly in the United States and 
must abide by Health Insurance Portability and Accountability Act of 1996 (HIPPA) compliance 
requirements. HIPPA was enacted by the 104th United States Congress and signed by President 
Bill Clinton in 1996. HIPPA has security provisions and requirements for data privacy to keep 
patients’ medical information safe. The act contains five titles that cover different facets of the 
legislation.

Since the customer has specified compliance requirements that are focused on HIPPA and 
health data security, blockchain technology can have a great impact here since we could use 
certificates and encryption keys to protect the data. From a session perspective, we could use 
channels, which Hyperledger Fabric supports remarkably.

The architecture shown in Figure 3.15 allows mobile users to access a blockchain service that 
is hosted on a cloud provider. The application that is being used is meant to provide mobile users 
with updates for their health care needs.

You can see that we are using cloud computing, and this blockchain cloud is serving the 
application for the mobile users. There are channels provided, and users are using their own 
channel. Fabric uses a public key infrastructure (PKI) to generate cryptographic certificates that 
are tied to an organization. Channel access is allowed only to the permissioned users, which is 
exactly required for privacy.

Table 3.1: hyperledger Fabric ledger options

Transaction Logs State Data (World)

Type immutable Mutable

Operations create, read create, read update, delete

DC leveldB leveldB/couchdB

Attitude embedded in peers key-value paired (Json, binary)

Query simple complex



hYperledger FABric | 97

Consortium Blockchain for International Trade Scenario
A customer has asked your IT integration company to design a blockchain network for their 
logistics application. The customer has stated this blockchain would be a consortium blockchain 
and would also entail some compliance requirements. There are no cryptocurrency requirements, 
and the customer stated that it was an international blockchain.

Figure 3.16 proposes a Hyperledger Fabric network that handles international trade. Various 
parties are involved in the blockchain network. The blockchain ledger has any nonfinancial 
activity written to the blockchain. There are several peers in the network as well as a dedicated 
MSP, OSN, and CA. This solution would be fine in most scenarios where the transactions per 
second would be low, such as 2,000 TPS or less.

Cloud Server

User1 User2

User Actions
Enrollment

Hyperledger Fabric Network

Peer1

Peer2

Peer...

Transactions Ordering
Service

CA

Fabric
Client

health care Provider

Insurance Company

Channel2Channel1

Requests/Updates

Query/Update

Figure 3.15 
health care blockchain 
with hyperledger Fabric

Hyperledger Fabric Network For Trade

Endorsing
Peer1

Endorsing
Peer2

Order Service
Node (OSN)

Client

Shipper
Query

Anchor
Peer1

Peer1

Receiver
Query

Blockchain Participants(Users)
•   Shipper
•   Inland Transporter
•   Port/Terminal Operator
•   Customs/Agriculture Authorities
•   Ocean Transporter

CA

Blockchain for Customer can validate
the docID for Bill of Lading,
Customs Declarations
The docID is written to the ledger

Block 0, 1, 2, 3 = block + chain

MSP

Figure 3.16 
hyperledger Fabric 
network for trade



98 | CHAPTER 3 Architecting Your enterprise BlockchAin

Hyperledger Fabric is a flexible, secure, and well-utilized cross-industry blockchain. The 
developer community is robust when compared to other permissioned blockchains.

R3 Corda
This section covers R3 Corda, a permissioned cross-industry blockchain that has a pluggable 
framework. R3 Corda is a permissioned targeted industry blockchain. Its real merits shine in the 
financial and insurance sectors. Corda is an enterprise-grade software company, and the consor-
tium has more than 200 members.

The following topics are covered:

 ◆ R3 Corda’s main selling points

 ◆ R3 Corda’s design considerations

 ◆ R3 Corda’s design example architectures

R3 Corda’s Main Selling Points
The main selling points of R3 Corda are somewhat focused compared to Hyperledger Fabric, for 
example. This focus is mainly because of a clearly defined distributed ledger focused around and 
created by financial services organizations. Corda does have a well-funded backing from the R3 
consortium and is a solid play for enterprise services.

 ◆ Corda is a distributed ledger designed specifically for use cases in the financial sector.

 ◆ Corda has expanding use case for insurance and other industries.

 ◆ Corda has a unique feature where there is direct support for legal prose in smart contracts.

 ◆ There is easy enterprise integration due to JVM flexibility.

 ◆ Enterprise support is unmatched by other blockchains because of its corporate structure 
and funding mechanisms.

R3 Corda is an ever-evolving ledger platform that provides clear value to its user base. R3 
Corda leverages industry-standard protocols that provide what is considered seamless integra-
tion for operating the JVM that also maintains a robust toolset. Corda also has customized 
experiences for financial customers for interest rate swaps, standard initial margin model 
calculations, interbank settlements, and even reinsurance.

R3 Corda’s Design Considerations
Originally, R3 Corda was designed as a distributed ledger to solve the privacy issue of a block-
chain solution for the financial sector. The target market for R3 is the financial industry, specifi-
cally the wholesale financial markets, and therefore this is what we will be discussing.

Corda is highly scalable and can support billions of transactions in a deployment. It is secure 
because of its security structure and is extremely stable because of its professionally devel-
oped codebase.



r3 cordA | 99

Corda Advantages
Corda’s main advantages are focused on the increased efficiency for reducing manual tasks, as 
well as its capacity for introducing legal prose. As one would expect, smart contracts in Corda 
are detailed agreements whose specific execution is automated through computer code. The code 
works based on the inputs received. One distinct feature that other enterprise blockchains do not 
have is the manner that the contract law is encoded (attached) into the smart contracts, which 
may be legally enforceable.

One main advantage of using smart contracts with Corda is that they link the business logic 
and business data to the associated legal prose. A second advantage is that these Corda contracts 
define a specific part of the business logic on the blockchain ledger and are considered mobile 
contracts.

Privacy
Corda was designed for privacy, as we stated in the previous chapter. It does this by sharing only 
the transaction within that customer network (no broadcast data propagation). Essentially it was 
designed to be a distributed ledger that addresses privacy and interoperability, which are still 
fundamental design principles of Corda. Notaries were designed in Corda to be clusters of 
distrusting nodes operating a BFT algorithm.

R3 Corda provides an impressive return on investment (ROI) for recording, managing, and 
automating financial agreements that are manual processes with low efficiency.

Smart Contracts
The Corda platform supports smart contracts with an interesting twist. That twist is through the 
implementation of legal prose designed into the platform.

The smart contracts on Corda are called CorDapps. A CorDapp is usually developed in Java 
or Kotlin, and the legal prose is an optional attachment.

R3 Corda has done some detailed work of addressing the “contract” part of “smart contracts.” 
What do I mean by this? One of the challenges of any agreement in computer code is to be able to 
address legal prose. Corda essentially supports the inclusion of legal prose when the contract 
code may not be sufficient to address legal concerns.

In CorDapps, each contract will refer to a legal prose document that states the rules governing 
the evolution of the state over time in a way that is compatible with traditional legal systems. 
The benefit to the business is clear with a transparent chain of provenance for a legal document’s 
full life cycle from partial settlement to full maturity. This transparent chain of provenance is a 
game-changer. I am not aware of any other blockchain capability with this maturity in a legal 
prose sense that is integrated. If you can connect your smart contract text to business logic 
through a template, then your enterprise can commoditize your legal documents.

NOTE legal prose, as it is known in the legal industry, is an approach to legal writing as a step-by-
step process.

R3 Corda has an excellent video on legal prose that can be viewed on Vimeo at https://
vimeo.com/213879293.



100 | CHAPTER 3 Architecting Your enterprise BlockchAin

Ledger Options
The ledger in R3 Corda Ledger was built for financial markets and was designed to focus on the 
following:

 ◆ Data privacy

 ◆ Consensus

 ◆ Regulatory

 ◆ Smart contract

 ◆ Integration with bank systems

The Corda ledger differs from other blockchains from each peer’s viewpoint. Essentially, the 
Corda ledger has no single central store of data. What it does have is that each node maintains a 
separate database of known facts. Known facts are really a view of the world state that the node 
can view. Each peer sees only a subset of facts on the ledger, and no peer is aware of the ledger in 
its entirety.

In Corda the ledger is not a central ledger and is a shared fact store. Network peers maintain a 
vault of facts, and these facts are not shared with all.

Figure 3.17 shows the relationships of a state in Corda and the views of the participants. We 
can see three participants, Joe, Greg, and George. The shared facts’ view of the ledger in this 
example are A and B. Joe and Greg share fact B, and Greg and George share fact A. Facts D and C 
are not shared between participants.

Key Concepts
Corda is a permissioned peer-to-peer network targeted toward the financial sector. Corda uses a 
pluggable notary model for managing consensus rather than using traditional Practical Byzantine 
Fault Tolerance (PBFT) mechanisms such as proof of work (PoW). Corda uses notary pools, which 
enable greater performance and scalability via parallelism. Multiple notary pools can implement 
alternate consensus algorithms on the same network as well.

Greg

Joe

George

A

C

BD

Figure 3.17 
corda ledger facts



r3 cordA | 101

Corda has an extensive and unique terminology base that must be understood before consid-
ering designing a Corda network. Refer to the master documentation as needed.

 ◆ Consensus is when parties reach an agreement on a shared fact.

 ◆ Flows are light-weight processes used to coordinate interactions needed for the peers to 
reach consensus about a shared fact.

 ◆ The doorman acts as a front to a certificate authority. It accepts POSTs of PKCS#10 
certificate requests and returns a string that can be used to poll the server until a zip file of 
certificates is ready.

 ◆ Oracles are a means for Corda contracts to reference off-ledger data in the controlled and 
deterministic manner that’s required for the smart contracts sandbox.

 ◆ State objects are immutable objects that represent facts such as a financial agreement or 
contract at a specific point in time.

 ◆ Transactions are input states, and these states create output states. The output state that 
was created replaces the input that is “historic.” This is similar to appending the 
blockchain.

 ◆ Notary is a Corda network service that provides a distinct service for the uniqueness 
consensus. The notary accomplishes this by attesting that the transaction is unique, which 
in Corda means that the proposed input states have not been consumed. The notary pool 
provides what is known as the point of finality in the system and is perhaps the most 
unique part of Corda.

 ◆ Vaults are databases that track all the current and historic states that the vaults 
are aware of.

Consensus
Corda has “pluggable” uniqueness services to improve privacy, scalability, legal-system compat-
ibility, and algorithmic agility.

The pluggable uniqueness service in Corda and the use of shared cryptographic hashes to 
ensure restrictive viewing of transactions both tackle the scalability and privacy issues.

Consensus, used for determining whether a proposed transaction is a valid ledger update, 
involves reaching two types of consensus.

 ◆ Validity consensus, which is checked by each required signer before they sign the 
transaction

 ◆ Uniqueness consensus, which is checked by a notary service only for the uniqueness of a 
transaction

For more information on Corda consensus, please refer to the Corda master documentation at 
https://docs.corda.net/key-concepts-consensus.html.

Transactions
A transaction is a proposal to update the ledger. A financial transaction is an agreement between 
buyer and seller parties to exchange one or more assets for the payment of monetary value. 



102 | CHAPTER 3 Architecting Your enterprise BlockchAin

Examples are the purchase of products or services, loans and mortgages, bank deposits and 
withdrawals, credit and debit card purchases, chargebacks, interest accrual, tax payments, 
royalty payouts, and so on.

A nonfinancial transaction is an agreement that involves no transfer of monetary value 
between parties. Examples are a change of postal address or appointing a CEO at a given 
annual salary.

Corda’s view of the world is driven by the intent of the transaction.

 ◆ Financial transaction: Agreement to exchange assets for payment of monetary value

 ◆ Nonfinancial transaction: Agreement that involves no transfer of monetary value

In Corda, transactions are defined by the use of commands to indicate their intent in Corda. 
Figure 3.18 shows a simple example of how to define a transaction.

Transactions represent assets that are fungible assets, which are homogenous assets that are 
divisible, mergeable, and interchangeable, and also nonfungible assets, which are unique assets 
that represent something that is not divisible, mergeable, or interchangeable.

R3 Corda’s Design Example Architectures
The following example architectures are meant to provide insight into a customer request 
scenario for Corda that a presales consultant may run into. There are likely many different 
solutions that could be scoped and designed based on the requirements.

Cross-Border Payments Scenario
A customer has asked your IT integration company to design a blockchain network for their 
customer base, which consists of financial organizations. This organization would like to have 
Corda reduce intermediaries and provide efficiencies around cost and process time. The applica-
tion will send payments in USD but will use a foreign exchange service to convert to EUR.

Figure 3.19 presents an example architecture for transferring value between two banks. It 
shows two banks, Bank A and Bank B, which are in a CorDapp to transfer value by using a 
foreign exchange to convert USD into EURs. The contract has the cash payment, public key, 
and address.

Transfer
Cash

Transferred
Cash

Corda transaction commands include intent
Transfer, Pay, Issue, and Trade, for example

Figure 3.18 
corda transac-
tion commands



r3 cordA | 103

Insurance Consortium Scenario
A customer has asked your IT integration company to design a blockchain network for their 
customer base, which is an insurance consortium. The customer’s consortium has decided that it 
would need to ensure that it uses legal prose in the deployment of their smart contracts.

Figure 3.20 shows an insurance solution that uses a CorDapp to issue policies. An insurance 
broker is using a consortium-based Corda blockchain network. Before the policy is issued, the 
broker uses an actuary tool that assesses risks against the policy before a decision is made and 
issued. Once a positive result is issued, the broker can issue a policy via a CorDapp Issue Policy, 
which would issue the policy and validate payment.

Bank A Bank B
Corda Blockchain Nodes Corda Blockchain Nodes

Payment
Sender

Corda Nodes Corda Node

Blockchain ApplicationBlockchain Application

Foreign Exchange

Corda Contract

Contract Name: Joe

Corda Cross Border Payments Example

Address: 17.122.122.236:10005
Public key: 5vhg6560sd3223c
CorDapps: Cash Payment USD > EUR

Payment
Receiver

Notary Pool Notary Pool

Oracle
Service

Figure 3.19 
usd to eur cordApp 
for cross- border  
payments

Corda Insurance Policy Issuance

Corda Blockchain Nodes

Insurance Consortium
Corda Contract Signed

Corda Nodes

Actuary
Service Notary Pool

Bank
Settlement

Issue
Insurance

Policy

Broker

Notary Pool

Contract Name: Shirley
Address: 17.122.122.234:10005
Public key: 9877gh222ss34vVc
CorDapps: Issue Policy

Figure 3.20 
insurance solution



104 | CHAPTER 3 Architecting Your enterprise BlockchAin

Corda is a professionally developed blockchain ledger that has robust use cases for the 
financial sector. Corda has built-in legal prose that enables a clearly defined and even legally 
enforceable contract.

Ethereum
This section covers the enterprise aspects of Ethereum, which is a permissionless cross-industry 
blockchain that is open source and is the de facto standard for token platforms.

Enterprise Ethereum is really nothing more than the permissioned version of the public 
Ethereum codebase. If your customer is looking to develop a distributed application that is based 
on a platform with a wide development base, then Ethereum is your target.

We will focus mainly on the enterprise benefits for Ethereum and the enterprise around these 
subject areas:

 ◆ Ethereum’s selling points

 ◆ Ethereum’s design considerations

 ◆ Ethereum’s design example Architectures

Ethereum’s Selling Points
Ethereum has several “selling points,” and they are focused on an enterprise use case for 
Enterprise Ethereum. Note that Enterprise Ethereum is a term that refers to how enterprises use 
Ethereum and that Enterprise Ethereum is not exactly a specific product and is more focused on 
hardening the codebase.

The following are the main selling points of Ethereum. They relate to why enterprises could 
use Ethereum in their enterprises even though it is a permissionless token-based platform.

 ◆ Enterprises can deploy the codebase of Ethereum and modify the code to meet an 
enterprise blockchain use case and can take advantage of the whole Ethereum ecosystem.

 ◆ Ethereum is the most widely used token platform, and this makes Ethereum a good choice 
for an enterprise to use for the digitization of assets. Ethereum is the most widely accepted 
because of the ERC-20 tokens utilized on public Ethereum blockchain.

 ◆ The Ethereum ecosystem is the largest of the blockchain ecosystems and has a developer 
community that is estimated to be more than 250,000 developers.

 ◆ Enterprise Ethereum is faster due to the privatized, permissioned, and hardened code-
base. It is many times faster than the public Ethereum network, which averages no more 
than 20 TPS.

 ◆ Private transactions are implemented with the use of channels.

The Enterprise Ethereum Alliance (EEA) is actually the world’s largest business blockchain 
consortium and somewhat bigger than the competitive Hyperledger Consortium.

The Enterprise Ethereum Alliance has more than 450 members including Microsoft, JP 
Morgan, Accenture, Intel, and so on. The consumer and enterprise focus areas of Ethereum are 
developing standards to promote interoperability and guiding regulations to ensure the future 
success of the Ethereum blockchain. Consensus is an organization that promotes blockchain 
success and they have a paper on Ethereum that one should read.



ethereuM | 105

NOTE to find out more about the ethereum blockchain fundamentals of consensys, see https://
media.consensys.net/the-  state-  of-  the-  ethereum-  network-  949332cb6895.

Ethereum’s Blockchain Design
In this section, we will cover the main aspects of Enterprise Ethereum, which is a hardening of 
the widely used permissionless blockchain platform that has its main use case focused on the 
digitization of assets, which is also known as tokenization.

Ethereum is a decentralized network of independent blockchain nodes, which means it is not 
controlled by any single governing entity. Ethereum is also referred to as a global computer, where 
you can write code that controls digital value, that runs exactly as programmed, and that is 
accessible from anywhere in the world.

From a historical perspective, the majority of business networks have been built on a central-
ized system of control and oversight. This approach has been used by governments and busi-
nesses for hundreds of years and has also been proven time and time again. This approach was 
needed since having an “intermediary” was required such as when sending funds from one bank 
to another bank.

A centralized system means that any single entity can control the blockchain network, but it 
also means there is a single point of failure, which makes apps and online servers utilizing this 
system extremely vulnerable to hostile takeovers, hacking, and instability.

Ethereum, being the exact opposite of a centralized system, is a decentralized system. This 
decentralized system is fully autonomous and is not controlled by any one person or organiza-
tion. Ethereum has no central point of failure also since it is being run from thousands of nodes 
in more than 100 countries (at the time of writing).

NOTE “i am seriously looking forward to when the cryptocurrency community basically passes away 
with proof-of-work.” —Vitalik Buterin, ethereum inventor

From a design perspective, Ethereum is the simplest because of its permissionless structure 
and limited enterprise-ready capabilities. For more sample designs, please reference the 
book’s website.

Enterprise Ethereum increases the privacy level with the implementation of private P2P 
transactions that increase scalability and performance. It also introduces different consensus 
protocols other than proof of work. It allows customers to choose, for example, their network 
size, block size, and gas limits.

Enterprise Ethereum Architecture Stack
The Enterprise Ethereum Alliance (EEA) has a stack layer that you should be aware of. The EEA 
stack and specification are meant to accelerate the deployment of Enterprise Ethereum solutions 
and motivate businesses to deploy EEA standardized solutions by providing interoperability 
among multiple vendors of choice.

The following are the main areas of the EEA stack:

 ◆ The Application Layer is the top layer, under which are three sublayers: Dapps, Contracts 
and Standards, and Smart Contracts and Tools.

 ◆ The Tooling Layer is the next layer, under which are three sublayers: Permissions and 
Credentials, Integration and Deployment Tools, and Client Interfaces/APIs.



106 | CHAPTER 3 Architecting Your enterprise BlockchAin

 ◆ The Privacy/Scaling Layer is the third layer, under which are two sublayers: Privacy 
and Scaling.

 ◆ The Core Blockchain Layer is the next layer, under which are three sublayers: Storage and 
Ledger, Execution, and Consensus.

 ◆ The last layer, the Network Layer, is the foundation layer and contains only one sublayer: 
Network Protocol.

When designing your enterprise blockchain, it is important from an integration standpoint to 
understand how the stack could affect your design and integration planning.

NOTE For more information on the ethereum enterprise stack, refer to https://entethalli-
ance.org/technical-documents/.

Private Transactions
One the main points of using Enterprise Ethereum solutions is the implementation of private 
transactions, whether on the chain or off the chain. When the “chain” is referenced in Ethereum, 
it is referring to the main public blockchain network. Enterprise will want to have both on-chain 
and off-chain transactions to get the most benefits of the Ethereum blockchain ecosystem. Range 
proofs or ring signatures can be used. ZK-SNARKS is also on the road map for possible improve-
ments to privacy for the blockchain.

Private transactions are based on a mix of symmetrical and asymmetrical cryptography 
applied on event sourcing architectural scheme.

Symmetric encryption is used for information several parties want to share. A private key 
signature is used to identify the origin of the data, and public key encryption is used for sharing 
the symmetric encryption key and notifying one party. Each transaction actor must install and 
run the Ethereum Privacy node.

Figure 3.21 shows how a private transaction could occur with Ethereum. Two or more 
business partners would have private nodes installed and would connect to the public Ethereum 
network. For example, the private key signature is used to identify the origin of the data and 
then the public key is used for sharing the symmetric encryption key. The business partners 
would be notified of a transaction, and it would be written to the Ethereum blockchain.

Privacy Node A

Privacy Node B

Privacy Node C

Public Node
PKI

PKI

Public Node

Private Ethereum Network Transactions use Private Nodes
Point to point tunnels over the Public Ethereum Network

Figure 3.21 
An ethereum private 
transaction



ethereuM | 107

Creating a private transaction means installing a simple stand-alone program that interacts 
with the public blockchain and encrypts and decrypts all data regarding a business contract 
between two business parties.

Scaling Transactions
Unlike the traditional Ethereum platform codebase, the Ethereum Enterprise codebase has two 
types of transaction-scaling approaches instead of one. These are on-chain and off-chain 
transactions.

On-chain scaling occurs at layer 1 of the Enterprise Ethereum architecture. It changes the 
Ethereum protocol to suit the transactional needs better. Off-chain scaling happens at layer 2 of 
the architecture stack of the Enterprise Ethereum.

The main purpose of using Enterprise Ethereum is to extend private transactions using the 
public network. This of course provides some benefits to companies that may not want to invest 
in a private blockchain infrastructure. The main proposal allows businesses to connect into the 
public Ethereum blockchain, pay for the use of the public infrastructure, and transact with each 
other via standard smart contracts, using their standard technology, which is public key infra-
structure to identify their business partners.

Ethereum’s Design Example Architectures
The following example architectures are meant to provide insight into a customer request 
scenario for Enterprise Ethereum that a presales consultant may run into. There are likely many 
different solutions that could be scoped and designed based on the requirements.

Corporate Finance Blockchain Scenario
The customer has asked your IT integration company to design a blockchain network for their 
corporate finance application regarding letters of credit. Customer has stated they would not 
invest in a member-based blockchain and want a public blockchain that has reasonable privacy 
technology implemented. There are no cryptocurrency requirements, and the customer has 
stated that there is trading between numerous parties and they want this trading to be 
economical.

Figure 3.22 shows how private transaction would occur via the public Ethereum blockchain. 
We have two business partners that are using privacy nodes. From a deeper technical perspec-
tive, the privacy nodes compress and then sign the transaction data with its RSA private key, 
generate a one-time use symmetric AES 256 key, and lastly encrypt the signed transaction. The 
symmetric key is then encrypted with the public key for each of the target nodes. The keys are 
published into the PrivateTransactions smart contract on the public Ethereum blockchain.

Diploma Issuance Blockchain Scenario
Your customer, the School of Blockchain, has asked your IT integration company to design a 
blockchain application that will publish certification credentials and diplomas to a public 
blockchain. The customer has stated they will not invest in a member-based blockchain and just 
want the diplomas published to the public blockchain. They also want to extend this capability to 
other consortium schools in the future. These certification credentials and diplomas will be 
public viewable but will require a private contract to publish to the blockchain.



108 | CHAPTER 3 Architecting Your enterprise BlockchAin

Ledger

LedgerLedger

Ledger Ledger

Letter of Credit Private Transactions

Ethereum Public Network

Dapp

Dapp

Private Network
Lender 2

Private Network
Lender 1

Privacy Node - PKI

Credit Party 2

Privacy Node - PKI

Credit Party 1

Dapp

DappDapp

Public Node

Mining
Node

Mining
Node

Mining
Node

Mining
Node

Blockchain Network

Figure 3.22 
letter of credit issuance with private transactions



QuoruM | 109

Figure 3.23 shows a credential-issuing blockchain of a school and a student using private 
transactions with Ethereum. The school is publishing the credentials to the Ethereum public 
network and has sent the student a private link that is essentially a public/private key pair to 
authenticate an issuer as well as a recipient. The student also can generate a key pair and share 
the credentials with an employer, for example, if requested.

Ethereum is a flexible and well-utilized cross-industry public blockchain with private 
extensions. The developer community is robust compared to other permissioned blockchains, 
and the use cases abound with potential.

Quorum
This section covers Quorum, a hybrid cross-industry blockchain that has a pluggable framework. 
Quorum is an open source private permissioned fork of Ethereum designed for enterprise 
deployment. The following topics are covered:

 ◆ Quorum’s selling points

 ◆ Quorum’s design principles

 ◆ Quorum’s design example architectures

What is really useful about Quorum is that if you already know Ethereum, you’re learning 
curve for Quorum is no more than an hour. The only challenge with Quorum is not technical 
since it’s a fork of the Ethereum blockchain but is more about its limited user base and accept-
ance challenge. JP Morgan has attracted more than 220 banks to its Quorum-based Interbank 
Information Network.

Some differences between Ethereum and Quorum is that Quorum was meant to be deployed 
as a private Ethereum-based network or be extended to a public network. There is no mainnet as 
with Ethereum, and it was created through a joint effort by JP Morgan and engineers from the 
Ethereum Foundation, which brings it significant support. Consensus algorithms used in 
Quorum are based on voting and does not involve mining at all like in Ethereum.

The developer base overall is lower compared to Ethereum and Hyperledger, and the number 
of applications is just a fraction of what you may find on Ethereum. However, a well-versed 
Ethereum developer will easily take an Ethereum distributed application and convert it to work 
with Quorum.

Quorum’s Selling Points
Quorum is an enterprise-focused, private permissioned blockchain infrastructure specifically 
designed for financial use cases. Quorum is built from a fork of Ethereum called Go Ethereum.

Quorum functions similarly to Ethereum. The similarities include network and peer permis-
sions management, increased transaction and contract privacy, voting-based consensus mecha-
nisms, and higher performance. When considering Enterprise Ethereum or Quorum for a 
particular use case, it is important to consider Quorum for financial sector customers.



110 | CHAPTER 3 Architecting Your enterprise BlockchAin

Ledger

LedgerLedger

Ledger Ledger

School Credentials Private Transactions

Ethereum Public Network

Dapp

Dapp

School of BlockchainStudent on Internet

Privacy Node - PKI

School Administrator

Student provided link to
Certificate with PKI

View or edit Diploma
information

Publish Diplomas

Student

Dapp

DappDapp

Public Node

Mining
Node

Mining
Node

Mining
Node

Mining
Node

Blockchain Network

Figure 3.23 
credential issuance blockchain



QuoruM | 111

The main points to consider with Quorum are the following:

 ◆ Private transactions are supported, and private contracts through public/private state 
separation are available over a private network or a public network.

 ◆ Quorum provides for solid security and a high throughput of transactions in a private 
blockchain deployment. A transaction speed increase is a result of the simplistic consensus 
mechanisms.

 ◆ Alternative consensus mechanisms  are available with multiple consensus mechanisms 
that are more appropriate for consortium chains instead of the proof-of-work consensus 
with Ethereum.

 ◆ Quorum takes advantage of the Ethereum ecosystems and maintains similarities in some 
respects. This provides for a rapid development experience for Ethereum developers.

 ◆ Quorum is a fully supported blockchain by a consortium network led by JP Morgan.

Quorum’s Blockchain Design Principles
Quorum is a permissioned decentralized platform that allows you to deploy dapps on top of it. 
It’s hybrid in the sense that it can support dapps created using one or more smart contracts. 
Quorum is a fork of the Ethereum codebase that provides for some similarities to Ethereum but 
also differences to Ethereum. From a design perspective, the differences are around the consen-
sus protocols Quorum uses, the encrypted storage, and a new Geth client.

In Quorum, the smart contracts can be written in the usual Ethereum developer language 
solutions such as Solidity, LLL, or Serpent. Solidity is by far the most accepted with the widest 
reach, so it is preferred. In Quorum, there can be multiple instances of a smart contract. Each 
instance is identified by a unique locater address, and you can deploy multiple dapps on the 
same Quorum network. Remember, we are not deploying Quorum over the Ethereum mainnet 
but rather over a private corporate network or another publicly shared consortium network.

Quorum Components
Quorum has the following main components in its architecture:

 ◆ Quorum Node, which is a modified Geth client. It has features that provide for some 
significant modifications. The main modifications made to the EVM node are a P2P layer 
that allows connection with permissioned nodes, validation changes to handle private 
transactions, removal of gas pricing, and newer consensus methods.

For current information on the Quorum Node, refer to the Quorum GitHub repository at 
https://github.com/jpmorganchase/quorum.

 ◆ Constellation, which is actually two separate components—Transaction Manager 
and Enclave.



112 | CHAPTER 3 Architecting Your enterprise BlockchAin

 ◆ Transaction Manager is responsible for transaction privacy of the chain. This compo-
nent is what actually stores and then provides access control to encrypted transaction 
data. Constellation also utilizes Enclave, which is the other component of 
Constellation for cryptographic functionality.

 ◆ Constellation  Enclave provides a distinct separation of concerns. Enclave also has an 
impact on performance improvements through the parallelization of specific crypto 
operations.

Figure 3.24 provides a high-level overview of Quorum.

Quorum is fairly simple at a high level. The first thing to note is a fork of the Ethereum 
blockchain. It uses go-ethereum, and this provides some benefits around integration.

Consensus
Quorum supports three consensus protocols at the time of writing: QuorumChain, IBFT, and 
Raft. QuorumChain is a majority voting protocol. From my point of view, Raft and IBFT are the 
most widely used and useful for most enterprise implementation.

Consensus is handled by a set of nodes that are relegated by voting rights, and all have voting 
rights and also confer voting rights to others. A smart contract in Quorum is used within the 
genesis block to assign voting rights. The smart contract tracks the current status of all the voting 
nodes within the blockchain network as it updates them. The voting process is triggered by a 
voting smart contract that pings or samples voting nodes. When a proper block height is reached, 
the transaction is committed.

Raft-based Consensus provides for faster transaction finality and also on-demand 
block creation.

Istanbul BFT consensus algorithm provides for perhaps the most important duty of a block-
chain, which is transaction finality. Istanbul BFT provides for peer permissioning,  which is 
essentially node/peer permissioning using smart contracts and ensuring only known parties can 
join the network.

Quorum offers significantly higher performance than the public Geth (Ethereum) of the main 
Ethereum network and provides the look and feel of Ethereum that Solidity developers know.

Quorum Ledger
Quorum maintains two state databases for the world ledger. One is the public state database, and 
the other one is the private state databases. Note that both have their world state committed over 
the same single ledger.

Quorum
Node

go-ethereum

Quorum

Constellation

Transaction
Manager Enclave

Figure 3.24 
Quorum block-
chain overview



QuoruM | 113

Privacy
Privacy is perhaps the main advantage over Ethereum, and that’s the main use case for Quorum. 
Privacy was intentionally built in through the development process of the Quorum blockchain. 
The Quorum blockchain manages much of its secure message transfers through its implementa-
tion of Constellation.

Quorum supports two mechanisms to achieve security as well as privacy.

 ◆ A zero-knowledge security layer protocol, which provides zero-knowledge proofs (ZKPs). 
A ZKP is a fancy way of defining transactions as a branch of mathematics. This allows one 
party in a transaction to prove knowledge of some secret value or information without 
conveying any detail about that secret.

 ◆ Private contracts, which enable the transaction to be disclosed between two parties.

Privacy models are changing, and the old way of banking privacy is also changing. With the 
implementation of Quorum’s permissioning layer, the financial institutions are ensured that only 
authorized parties can join their private Ethereum network.

Transactions
Constellation, Quorum’s privacy module, uses parameters to allow participants to exchange 
private transactions and ensures that confidential transaction data remains confidential 
between parties.

Transactions include a global transaction hash. This transaction hash consists of all transac-
tions in a block, the public state root hash, and the block maker’s signature.

Quorum’s Design Example Architectures
The following example architectures are meant to provide insight into a customer request 
scenario for Quorum that a pre-sales consultant may run into. There are likely many different 
solutions that could be scoped and designed based on the requirements.

Interbank Transfer Private Blockchain Scenario
Your customer who is a banking consortium has asked your IT integration company to design a 
blockchain application that will provide for interbank transfers over a private permissioned 
network. The customer stated this is not going to extend to the mainnet, and no oracles are 
needed, for example, to validate foreign exchange information.

Figure 3.25 shows a simple private blockchain. This private blockchain has a consortium and 
is used for sending payments. The consortium manages a distributed ledger and has imposed 
trusted peering.

Know Your Customer Blockchain Scenario
Your customer, a large international bank, has asked your IT integration company to design a 
blockchain that will provide for privacy but also meet the requirements for validating customer 
identities.



114 | CHAPTER 3 Architecting Your enterprise BlockchAin

Figure 3.26 shows a Know Your Customer (KYC) blockchain. Quorum nodes process transac-
tions and provide updates to both a private ledger and a public ledger. As part of this deploy-
ment, a KYC service is deployed to authenticate against known identities. A compliance node is 
maintained to ensure compliance around maintaining identities.

Quorum is a flexible private network-focused blockchain with private extensions based on the 
Ethereum blockchain. Privacy is perhaps the main advantage over Ethereum and is the main use 
case for Quorum.

Summary
This chapter discussed the four most widely used enterprise blockchains and distributed ledgers 
and several use cases for each.

Enterprise blockchains have very different requirements from each other, both technically and 
from a business perspective. Corda is very different from Hyperledger and Ethereum.

Enterprise blockchains generally fall into one of several categories: private permissioned, 
public or permissionless, or hybrid solution, such as Quorum.

Client
Dapp

Client
Dapp

Voting
Node

Voting
Node

Voting
Node

Quorum Private Network

Bank A

Non-voting
Node

TxMgr

Blockchain Participants Interbank Transfer

Bank A is sending funds to Bank B. This is done over a private
network using Quorum. Ethereum protocol is used over the network.

Bank B

Private
Ledger

Public
Ledger

Figure 3.25 
private blockchain 
with Quorum

Customer Applies Customer Approved

Customer Bank

Quorum KYC

Authorization Sent

Quorum Tx
Mgr

Request Sent

Blockchain Nodes

KYC is the process of a business identifying and verifying the
identity of its potential clients.

Compliance
Node KYC Service

KYC Database

Documents Processed

Records to Blockchain

Private
Ledger

Public
Ledger

Quorum
Node

Quorum
Node

Figure 3.26 
know Your customer 
blockchain



suMMArY | 115

Hyperledger is the umbrella project run by the Linux Foundation, and Hyperledger Fabric is 
the mostly widely used blockchain in the Hyperledger portfolio. Hyperledger Fabric is a flexible 
cross-industry blockchain that presents many options for enterprises to deploy.

Corda was first built mainly to target the financial industry, where recording, managing, and 
automating financial agreements are manual processes with high inefficiencies. The platform was 
designed and built considering requirements such as data privacy/confidentiality and transac-
tion scalability of financial institutions.

Ethereum is an open source software platform based on blockchain technology that enables 
developers to build and deploy decentralized applications (smart contracts). Ethereum is the 
most widely used permissionless blockchain and has a wide developer following.

Quorum is an open source blockchain solution built by enhancing the existing Ethereum 
blockchain. It provides an additional layer on top of Ethereum, which enables it to perform 
private transactions but also makes it more flexible by using different consensus algorithms. The 
main reason enterprises may want to use Quorum is for its privacy enhancements and perfor-
mance capabilities.

Example architecture designs were presented for each of the four blockchains presented. As 
part of the design module, we covered best practices, considerations, and technical concerns.



Chapter 4

This chapter will cover the most common consensus methods used for blockchains and distrib-
uted ledger platforms. The chapter will cover how blockchain consensus came to be and will 
provide insight into the historical challenge of the Byzantine Generals Problem and how it 
compares to the computer science challenges with distributed systems. The main focus of the 
chapter will be on the consensus methods used in the enterprise blockchains Hyperledger Fabric, 
R3 Corda, Quorum, and Enterprise Ethereum.

You will learn about the enterprise blockchain consensus algorithms used in the major 
enterprise blockchains. I will cover the most common blockchain consensus algorithms; however, 
I won’t be able to cover every blockchain consensus method. There are at least 40 consensus 
methods, and most are not viable for enterprise requirements, mainly because of the blockchain 
they were developed for or the lack of enterprise features.

The goal of the chapter is to give you a technical presales perspective on why the blockchain 
consensus methods vary and how this could play into an enterprise’s decision to implement a 
specific blockchain ledger platform. The chapter was not designed to provide you with a 
doctorate in blockchain consensus where you can trace transactions like an actual blockchain 
developer would.

Note that blockchains such as Bitcoin and Ethereum can be moving targets since the changes 
made to them are routine and expected. For an experienced blockchain and cryptocurrency 
expert, it should come as no surprise that a fork to these blockchain occurs almost annually. 
Another way to view a blockchain fork is that it is essentially a collectively agreed upon software 
update to the blockchain nodes. The main goal of a fork is to create two parallel blockchains, 
where one of the two is the winning blockchain.

Keeping in line with the mission of this book, I will focus on the enterprise-ready features, 
speeds, and feeds of the consensus methods that are used in enterprise blockchains.

NOTE “Consensus is the backbone of the blockchain and any other decentralized and distributed 
technology.” —Collin Thompson, cofounder of Intrepid Ventures

As mentioned, during the course of this chapter, you will look at each of the enterprise 
blockchains and distributed ledger consensus methods that are used in Ethereum, R3 Corda, 
Hyperledger, and Quorum. I will also cover the enterprise aspects of these enterprise blockchains 
and ledgers that have pluggable or modular components to enable your customers to have 
flexibility with the consensus approach.

Understanding Enterprise 
Blockchain Consensus

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



118 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

You will see that both proof of work (PoW) and proof of stake (PoS) are commonly used as 
comparisons throughout the book. The reality is that it is hard to compare consensus mechanisms 
without a reference point of comparison to Bitcoin’s PoW since it was the original consensus 
method. PoS is also widely used in blockchain platforms and can make for interesting compari-
sons as well. The chapter also will review what consensus is, why is it important, and how the 
Byzantine Generals Problem came about and how it was solved with a form of consensus  
called Byzantine fault tolerance.

Specifically, the following consensus methods are covered in this chapter:

 ◆ Proof of work

 ◆ Proof of stake

 ◆ Proof of elapsed time

 ◆ Delegated proof of stake

 ◆ Delegated Byzantine fault tolerance

 ◆ Practical Byzantine fault tolerance

 ◆ Istanbul Byzantine fault tolerance

 ◆ Raft-based directed acyclic graphs

Blockchain Consensus Methods from a Historical 
Perspective
This section covers the concept of consensus from a historical perspective. The following topics 
are discussed:

 ◆ The importance of consensus

 ◆ The Byzantine Generals Problem

 ◆ Bitcoin’s solution to the Byzantine Generals Problem

 ◆ Byzantine fault tolerance

The Importance of Consensus
Consensus, as you know, means the method used to come to an agreement. So, consensus in a 
blockchain is how the blockchain nodes “come to agreement” over the blockchain transactions 
that will be written to the blockchain ledger. Consensus can be viewed as an agreement on the 
last state of the blockchain ledger’s “world state,” which is similar to a snapshot or picture of the 
current transactions written. Consensus validates transactions and also orders them.

More specifically, a consensus algorithm is a process used to achieve an agreement, for 
example, for a transaction on a distributed network. The primary concern to the blockchain 
network’s operation is the maintenance of the consensus of the information being recorded on 
the blockchain within the blockchain network. Consensus algorithms inherently have a trade-off. 
The trade-off is between transaction security and performance in most scenarios. Performance in 
blockchains is measured in transaction throughput, which is also known as transactions per second 
(TPS). For example, the nature of Ethereum is trustless and is addressed by using the well-known 
proof-of-work algorithm. The Ethash consensus algorithm used in Ethereum makes attacks both 



BloCkChaIn ConsensUs MeThods froM a hIsTorICal perspeCTIVe | 119

prohibitively expensive and unlikely to occur. However, Ethereum is slow compared to other 
database technologies.

Consensus can also impact the parameters and security of the blockchain ledger operations. 
Understanding the strengths and weaknesses of the blockchain consensus being deployed is 
advisable since exposure to known vulnerabilities can be avoided with some basic knowledge. 
Also, the blockchain network could have rogue actors that could facilitate greater exposure to 
vulnerabilities.

Enterprises require availability and consistency at a minimum. By the end of this chapter, it 
should be clear that specific consensus algorithms were designed to achieve reliability in a 
network involving multiple unreliable nodes. Solving the consensus problem as it is known in 
the industry is quite important in distributed computing and for that matter enterprise services.

Consensus in a blockchain follows the same requirements as distributed computing and must 
satisfy the following two properties to guarantee an agreement among network nodes:

 ◆ Safety is referenced in most blockchain platforms as being able to provide a finality to a 
blockchain transaction. In a blockchain, this can mean that each node will have the same 
output for each input.

 ◆ Liveness is referenced to availability. In a blockchain, this means that each nonfaulty node 
will eventually receive every submitted transaction.

Two types of blockchain consensus are generally accepted in the industry: voting-based and 
lottery-based. Voting-based consensus should be chosen based on the following:

 ◆ Finality—Voting-based algorithms are considered beneficial since they provide what is 
considered low-latency finality. This is accomplished by a majority of nodes validating a 
transaction or block.

 ◆ Strict rules—Rules are strictly enforced, especially in a PoW consensus method as used 
in Ethereum.

Lottery-based consensus should be chosen based on the following:

 ◆ Fairness—The function should distribute leader election across the broadest possible 
population of participants.

 ◆ Investment—The cost of controlling the leader election process should be proportional to 
the value gained from it.

 ◆ Verification—It should be relatively simple for all participants to verify that the leader 
was legitimately selected.

Byzantine Generals Problem
The Byzantine Generals Problem comes from the world of traditional computer science. In this 
scenario, the involved parties must come to an agreement for a strategy in order to avoid a 
complete failure of operations. It could also be that some nodes in the network could be corrupt 
and effectively spreading unreliable requests or information.

NOTE The Byzantine generals problem was originally referenced in a paper by leslie lamport, 
robert shostak, and Marshall pease of srI International. see https://www.microsoft.com/
en-us/research/publication/byzantine-generals-problem/?from=http%3A%2F%2Fr
esearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Flamport%2Fpubs%2Fbyz.pdf.



120 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

Before telecommunications, encryption, and general information technology (IT), the only 
way to really communicate with other people was through other people who were messengers. 
This form of communication was clearly dangerous for both the army and the messenger. 
Messengers could be captured, for example, and the message stolen, which could place the army 
in a vulnerable scenario. Sure, other forms of communications were available such as smoke 
signals or mirroring. However, smoke signals were not accepted as a way to be secretive.

Perhaps the city is strong enough to defend itself against one or two of the enemy army 
brigades, but it may not strong enough to defend against three and definitely not against seven. 
So, the general’s seven brigades need to have “consensus” and must agree on how, when, why, 
and where to attack with precision.

How do the generals attack at the same time? How do they know a message sent from 
another brigade was not tampered with? How do they communicate so it’s not intercepted?

Now let’s get back to computer science and specifically discuss how consensus affects 
blockchain technology. In the world of blockchains, nodes are essentially virtual machines 
running the blockchain networking protocols, code, and messaging services on a distributed 
network. These blockchain nodes need a way to reach an agreement when it comes to writing to 
the blockchain ledger. This is where consensus comes in to handle how these blockchain nodes 
come to an agreement in this distributed network.

Figure 4.1 shows a blockchain network with Ethereum Virtual Machines. This distributed 
network has six nodes connected in a mesh network style. Blockchain ledgers are not updated on 
one node at a time but are actually propagated to all the nodes at the same time in most distrib-
uted ledger platforms.

EVM EVM

EVM

EVM EVM

EVM

Figure 4.1 
ethereum node network



CoMparIng enTerprIse BloCkChaIn ConsensUs MeThods | 121

It is critical that the agreement between all of these blockchain nodes on how to write to the 
blockchain ledger is strictly defined. This strictly defined agreement in blockchain is called 
reaching a consensus.

The true solution to the Byzantine Generals Problem is not a straightforward solution where 
“one size fits all” in the world of consensus. These blockchain ledger solutions need to involve 
specific types of hashing, intense computing work, and a latency-tolerant peer-to-peer communi-
cations protocol between all the nodes to verify the transactions. You can think of nodes as 
generals when applying the Byzantine Generals Problem to blockchains.

Byzantine Fault Tolerance
Byzantine fault tolerance (BFT) came about since it represents a valid solution to the Byzantine 
Generals Problem. BFT is a crucial part of an effective blockchain platform, and there are 
multiple ways in which tolerance can be implemented. In your role as a presale’s specialist or IT 
architect, you need to understand the various consensus methods available based on the enter-
prise blockchain platforms you’re considering.

Figure 4.2 goes through the step by step of how the Byzantine Generals Problem works. First, 
General A gets a message to attack, while General B does not get this message. Because General B 
does get this message, this creates a problem where the city that was being attacked could foil the 
whole attack.

I will be discussing various forms of Byzantine fault tolerance, such as PBFT and other forms 
of BFT, in the remaining parts of this chapter.

Comparing Enterprise Blockchain Consensus Methods
One of the main challenges that you can run into when understanding blockchain consensus is 
how vastly different the consensus algorithms can be for different blockchain ledger platforms. 
For example, Bitcoin and Ethereum both use a form of PoW, which is an amazingly costly and 
resource-intensive consensus method. Other enterprise blockchains use a form of voting for their 
consensus approach.

A wants to attack;

General A General B

A will attack;
B will attack;

If you respond, I will attack

If you respond, I will attack

If this message gets
lost, then B will not
commit to attack.

A will attack;
B wants to attack;

We’ll attack
A will attack;
B will attack;

Figure 4.2 
Byzantine fault 
tolerance workflow



122 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

Table 4.1 references the most common blockchains and the consensus methods they employ. 
Each consensus method has a specific use case and its own pros and cons. Most of the blockchain 
consensus methods were developed to work on a private permission blockchain such as the 
various versions of BFT and more specialized proprietary consensus approaches such as Raft- 
based directed acyclic graphs and proof of elapsed time.

Proof-of-Work Consensus
Bitcoin was the first practical and successful cryptocurrency platform, and it introduced the 
proof-of-work (PoW) consensus method as part of the platform. The proof-of-work protocol 
involves block miners solving complex cryptographic puzzles. As part of participating in the 
challenge of solving complex problems, miners are compensated by receiving rewards in the 
form of Bitcoin in the case of the Bitcoin blockchain platform, or Ether in the case of the 
Ethereum blockchain platform. Proof of work is like a running a marathon for the blockchain 
miners in the sense that the first node to produce the longest chain will win the block rewards, 
which are cryptocurrency or tokens depending on the platform.

Table 4.1: Common blockchain consensus methods

Consensus Method Used In Primary Pros Primary Cons

proof of work BTh, eTh, lTC Widely tested slow and 
resource intensive

proof of stake peercoin, eTh Casper energy efficient nothing at stake

proof of elapsed time hyperledger sawtooth participation cost specialized hardware

delegated proof of stake steemit, eos, lIsk fast and efficient Witnesses/not 
centralized

delegated Byzantine 
fault tolerance

neo fast and scalable root chain control

practical Byzantine 
fault tolerance

hyperledger fabric efficient, sharding 
transaction finality

Centralized

federated Byzantine 
fault tolerance

ripple, stellar low cost and high 
throughput transactions

Centralized

Istanbul Byzantine 
fault tolerance

Quorum low cost, high 
throughput transactions

Centralized

raft Quorum, 
Ipfs, Clusters

faster block times permissioned only

directed acrylic graph Iota, hashgraph fast, energy 
efficient finality

oracle requirements



CoMparIng enTerprIse BloCkChaIn ConsensUs MeThods | 123

Proof of work is the most widely used consensus method. This is mainly because it was the 
original protocol and has proven its resilience against internal and external attacks. Basically, 
PoW demonstrates that a participant has done some work and gets a reward for solving 
a problem.

A high-level overview of the PoW consensus in Bitcoin is that a block including relevant parts 
of the transaction is hashed, and a random nonce is added to it so that the resulting hash is below 
a certain value, which is called the difficulty level. Another way to consider the mining process is 
to look at it as an operation of inverse hashing, which is a cryptographic approach. This inverse 
hashing determines a random number (nonce) so the cryptographic hash algorithm of block data 
results in less than a given threshold, in other words, the difficulty level. This difficulty level is 
what the miners use to gauge the level of compute power and resources needed to mine Bitcoin, 
for example, and if it would be profitable.

Figure 4.3 shows the high-level process of a PoW transaction where it references the previous 
block’s hash.

The second block is referencing the first block’s hash, and then the third block references the 
second block’s hash. For a block to be written to a blockchain, significant work has to be done by 
the miners.

Proof of work’s main characteristics are the following:

 ◆ It provides hard-to-predict blocks, which can add to the competitiveness of the blockchain 
for miners but also security for the blockchain network. Essentially, the math problem gets 
more difficult as required by the difficultly rate.

 ◆ It provides an easy way to validate the correctness of blocks by validating who manages 
to solve the problem through predefined values.

One main challenge with PoW is that a lot of energy is considered “wasted” or “consumed.” 
When you have thousands of nodes on a network such as Bitcoin, you will have thousands of 
nodes working to solve a problem. Consumption of resources is the main concern. Along with 
that, the cost to mine a Bitcoin has skyrocketed as well to over $1,000 or more. Mining cryptocur-
rencies requires intense electrical power requirements. To successfully mine Bitcoin, for example, 
you would need to purchase a “mining rig” that would likely have an application-specific 
integrated circuit (ASIC), which is a microchip designed for a special application such as Bitcoin 
mining. Mining is a competitive business, and an ASIC can provide a competitive edge and 
provide efficiency, performance, and even security in the blockchain mining arenas.

Block GFG1

Prev Block Hash

Tx1

Transaction Counter

Tx2 Tx3 Tx4 Txn

Block Header

Nonce

Block Hash

Block GFG2

Prev Block Hash

Tx1

Transaction Counter

Tx2 Tx3 Tx4 Txn

Block Header

Nonce

Block Hash

Block GFG3

Prev Block Hash

Tx1

Transaction Counter

Tx2 Tx3 Tx4 Txn

Block Header

Nonce

Block Hash
Figure 4.3 
Transaction process in 
proof of work



124 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

For example, in Bitcoin, a miner needs to be competitive, and this is done by continuing the 
testing of different unique values. These unique values are known as nonces. Once a miner 
manages to solve this complex problem, the miner will receive the prevalent bitcoin rewards.  
The miner then may add the block into the Bitcoin blockchain by broadcasting to the blockchain 
network that the block has been mined by this node.

Mining serves two main purposes for a blockchain. First, mining is used to verify the legiti-
macy of a transaction and because of this, helps to avoid the so-called double spending issue. 
Second, mining facilitates the creation of rewards and disbursement to the miners on the 
Bitcoin network.

NOTE “You called bitcoin a fraud. I’m a bitcoin miner. We create bitcoins. It costs over $1,000 per 
coin to create a bitcoin. What does it cost to create a U.s. dollar? Which one is the fraud? Because it 
costs whatever the paper costs, but it costs me and other miners over $1,000 per coin. It’s called proof 
of work.” —John Macafee on CnBC replying to a James dimon comment about Bitcoin

If you’re an enterprise or your customers are enterprises, then you’re likely not going to be 
using a PoW-based blockchain such as Bitcoin. You may want to use Ethereum, for example, as  
a token platform or perhaps to extend a payment gateway for a cryptocurrency platform  
as well.

In the case of Quorum and Enterprise Ethereum, however, you may have a good use case to 
consider those blockchains as well because of their hybrid enterprise solutions. Chapter 8, 
“Enterprise Blockchain Use Cases,” covers the more common use cases for Quorum and 
Enterprise Ethereum.

Proof-of-Stake Consensus
Proof of stake (PoS) is a consensus algorithm that is commonly used by cryptocurrencies to 
validate blocks and is very different from proof of work from a consensus standpoint. Proof of 
stake was created in 2011, and the first cryptocurrency to implement it was Peercoin in 2012. 
Essentially it was created as a way of avoiding the well-known economic and environmental 
issues with PoW, such as intense energy consumption and cost of mining.

Proof of stake implements an approach where the creator of the next block is determined by a 
randomized system that is logically dictated by how much of an investment a user is holding or 
how long they have been holding that particular currency. This is a different approach from the 
“computational power” in PoW, for example, where the probability of creating a block and 
receiving the associated rewards is proportional to a user holding the underlining token or 
cryptocurrency on the network.

Proof of stake is an interest-based approach to handling a blockchain where a node’s interest 
is directly proportional to its investment. Another way to look at proof of stake is that it is a 
deterministic way that is essentially based on wealth, defined as stake. A greater investment in a 
cryptocurrency stake equates to greater influence.

Proof of stake’s main characteristics are as follows:

 ◆ A stake may change due to economics.

 ◆ Votes are based on economics.

 ◆ Nodes need to be online to vote.



CoMparIng enTerprIse BloCkChaIn ConsensUs MeThods | 125

 ◆ Votes are final.

 ◆ Multiple votes are not allowed.

Ethereum has a planned Casper release, which is a fork of the Ethereum blockchain. This fork 
would be to change from a PoW consensus to a PoS consensus. Note that if Ethereum moved to a 
PoS consensus, it would be a major disruptive move, since Ethereum would go from a mining 
consensus to a validator consensus.

The PoS system is well enabled for platforms with a static coin supply. For example, most 
crowd-funded platforms leverage this approach to distributing tokens based on investment. This 
is exactly where Ethereum is going. However, what makes Ethereum different is its PoS-based 
finality system capable of overlaying an existing PoW blockchain. This overlay on top of PoW is 
essentially a hybrid PoW/PoS approach called Casper Friendly Finality Gadget (FFG). However, 
this update has been delayed because of technical challenges and security concerns.

One of the main advantages of using proof of stake is that it has a significantly lower energy 
requirement; therefore, you can get a better return on investment (ROI).

It has been documented that each Bitcoin transaction, which uses a PoW system, can require 
as much electricity as an average Dutch household does in two weeks. This is both ineffective 
and unsustainable.

Proof of stake is considered a more efficient consensus protocol as it requires far less electric-
ity to operate and can run on less strict hardware requirements such as ASICs instead of GPUs.

Also, PoS has less of a need to release many new coins, which has been a means of incentiv-
izing miners to maintain the network. This helps keep the price of a particular coin more stable 
and therefore provides incentive for more blockchain participation.

Comparing Proof of Work and Proof of Stake
Now that you have a general understanding of both PoW and PoS, let’s review PoW versus PoS 
to understand how disruptive it would be for Ethereum to move from PoW to PoS.

 ◆ Proof of work—PoW relies on miners running nodes on the network to solve computa-
tionally difficult math problems to validate new blocks of a transaction. Miners are 
compensated for their work.

 ◆ Proof of stake—PoW relies on validator nodes on the network to take turns proposing 
and validating the next block in the chain. The value of the validator’s node—and the size 
of its reward—depends on the amount of coins staked in the verification process. 
Essentially, the more you deposit, the bigger the potential return.

PoW is work intensive and requires miners (nodes) to write to the blockchain transactions. 
Miners are costly, and the mining process is hideously intensive economically and from an 
energy standpoint.

According to a recent Cointelegraph article (https://cointelegraph.com/news/bitcoin- 
mining- uses- more- power- than- most- african- countries), it was estimated that just the 
Bitcoin network uses 0.14 percent of the global energy consumption. Bitcoin mining now 
potentially consumes more electricity than the bottom 750 million electricity users, which is more 
than 10 percent of the population of the world.



126 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

PoS requires a different type of investment than PoW and is less energy intensive.
PoW offers the following pros:

 ◆ It is a historically proven consensus method that is widely used for cryptocurrency and is 
a stable platform.

 ◆ It’s secure because of the high cost and low probability of a 51 percent attack. (A 51 
percent attack is where the pool of mining nodes is taken over by a group of miners 
controlling more than 50 percent of the network’s mining hash rate.) This type of attack is 
unlikely because of the immense hash power and the requirement for the number of 
nodes to control.

PoW has the following cons:

 ◆ Transaction processing is slow compared to other consensus approaches. For example, in 
Bitcoin it can take several hours to get a transaction confirmation.

 ◆ The 51 percent attack concern is still real, meaning that 51 percent or more than 51 percent 
of nodes in the network can be exploited.

 ◆ Mining is a time-consuming process because of the work that has to be done to  
produce blocks.

 ◆ Mining is an expensive process from both an economic and environmental perspective. 
For example, Bitcoin mining uses so much power it is frequently banned by municipal 
power companies.

PoS offers the following pros:

 ◆ It is energy efficient compared to proof of work since there is no need to mine coins, 
making it an environmentally friendly option to cryptocurrencies such as Bitcoin.

 ◆ A PoS system has a lower barrier to entry because no mining rigs are required, and it 
allows more users to take part in the staking and forging processes.

PoS offers the following cons:

 ◆ Someone can monopolize the network. With PoS you know that an increased stake in the 
network means increased leverage. This can be a concern if someone forges most of the 
future blocks and centralizes the rewards.

 ◆ Hackers can steal your wealth but also your stake in the network. When someone loses 
their “wallet” with the coins, then they also lose their ability to vote in the blockchain  
network.

As with any blockchain requirement you’re trying to establish, reviewing the benefits and 
drawbacks should enable you to determine the right solution.

Proof of Elapsed Time
Proof of elapsed time (PoET) attempts to address the problem of proof of stake where the 
random election of participants proposing blocks can occur and also ensures that every partici-
pant has a fair chance to propose a new block and then participate in the voting process.



CoMparIng enTerprIse BloCkChaIn ConsensUs MeThods | 127

PoET was developed by well-known computer chipmaker Intel to be a production-grade 
protocol capable of supporting large network use cases. PoET requires a special CPU instruction 
set called Intel Software Guard Extensions (SGX), which provides for a trusted environment called 
TEE. Trusted code runs in an environment that is private from the rest of the application. This 
means the rest of the application will not interfere with the memory space of the trusted code, for 
example. Think of this as a container in cloud computing or a sandbox.

PoET essentially mitigates concerns about the PoW consensus by electing what is considered a 
leader and implementing a two-tier process. PoET attempts to correct the issue of PoS, which will 
arbitrarily determine that the members proposing blocks are expected to guarantee that each 
member has a reasonable opportunity to offer a block.

Every participant in the network is assigned a random amount of time to wait, and the first 
participant to finish its wait time will have the opportunity to commit the next block to the 
blockchain.

PoET imposes a hold-up time from its local reliable enclave of node members. The node 
member with the shortest hold-up time is next to “offer” a block only after the expiration of the 
hold time. Each privately trusted enclave signs the potential requests. The results are then 
validated by other members so they can confirm that no other nodes have skipped the 
waiting time.

There are valid concerns that because PoET relies heavily on SGX for the foundation of the 
protocol, the SGX enclave could be hijacked. This has been proven with the recent Foreshadow 
vulnerability. Still, Hyperledger Sawtooth utilizes the PoET consensus algorithm, which lever-
ages Intel’s SGX to implement this leader-based lottery system.

NOTE To find out more about poeT, visit the sawtooth document repository at https:// 
sawtooth.hyperledger.org/docs/core/nightly/0-  8/introduction.html.

PoET is a specialized use case. Its main benefit is that it is a trusted proprietary platform 
from Intel.

PoET offers the following pros:

 ◆ Trusted environment that is essentially a plug-and-play consensus on 
Hyperledger Sawtooth

 ◆ Lower energy usage than a PoW consensus that has mining costs such as hardware 
and energy

 ◆ Solves the random leader selection problem without being resource intensive or requiring 
incentives

PoET has the following cons:

 ◆ Lack of portability due to reliance on Intel’s proprietary hardware and software 
requirements

 ◆ Higher costs than other blockchain platforms due to the proprietary hardware 
requirements

As you can see, the pros and cons could certainly be acceptable for enterprises that are 
seeking a targeted solution and not expecting to go outside of that solution.



128 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

Delegated Proof of Stake
Delegated proof of stake (DPoS) was invented by Daniel Larimer, cofounder of Steem and CTO 
of EOS, both of which use DPos. DPos is an offshoot of its relative PoS.

DPoS uses a real-time voting system and a reputational system to achieve consensus. The 
DPoS blockchain consensus protocol allows the blockchain token holders to leverage their coin 
balances to elect delegates that are called witnesses. These witnesses have the opportunity to stake 
blocks of new transactions and then will be authorized to add them to the blockchain network.

Interestingly, the voting power is determined by how large the token holdings are of the 
specified blockchain stakeholders. The stakeholders who have more coins or tokens, for example, 
will have a greater impact on the network than those with fewer. Generally, this impact of the 
stake is directly proportional to the stake that has been placed into the system’s network.

DPoS is considered to be the least centralized consensus protocol compared to all others as it 
is the most inclusive.

There are significant variations of DPoS where a delegate needs to show commitment by 
depositing funds into what is similar to a time-locked security account. Each of these blockchains 
also has a different protocol for how the consensus method is implemented and maintained.

There are typically 21 to 101 delegates elected in the various blockchain networks using the 
DPoS consensus algorithm. For example, at the time of writing, in EOS and also Steemit there are 
21 block producers. In Bitshares, there are 101 block producers. In a DPoS network, it is up to the 
consensus rules of that chain to determine the variables of choosing a block producer.

Essentially, there are several benefits such as availability and performance, which are just two 
differentiators as compared to other blockchain algorithms. These are clear benefits to using a 
DPoS consensus.

DPoS offers the following pros:

 ◆ DPoS consumes significantly less energy than PoW and is considered to be very energy 
efficient.

 ◆ DPos provides incentives to participate in the network and provides delegates with a way 
to be voted out if they misbehave on the network.

 ◆ DPos scales greater than PoW and PoS and has faster transaction processing due to 
less overhead.

 ◆ There is a fair reward distribution where it is considered a “democratized“ 
reward schema.

DPoS has the following cons:

 ◆ A 51 percent attack is clearly possible because fewer people are in charge of ensuring the 
network stays secure.

 ◆ Centralization of control could occur if the delegates with the most tokens gain strength, 
which in turn could allow a “cartel” approach to network control.

Some of the blockchain projects that use a DPoS consensus include Steemit, EOS, 
Bitshares, and Lisk.



CoMparIng enTerprIse BloCkChaIn ConsensUs MeThods | 129

Delegated Byzantine Fault Tolerance
Delegated Byzantine fault tolerance (dBFT) was developed by the NEO team to overcome the 
Byzantine Generals Problem. NEO is similar in many respects to Ethereum, but I chose not to 
cover NEO as one of the blockchains due to its low usage and unproven platform at the time 
of writing.

It is, however, important to note that NEO does have some features that would be useful for 
enterprises, so covering it here will be useful.

The system comprises nodes, delegates, and a speaker. dBFT essentially works in a similar 
fashion to a country’s government structure, with its citizens, delegates (representatives), and 
speakers (politicians) to ensure that the country (network) is functionally correct.

dBFT has some unique terms compared to other blockchain consensus, so it’s important to 
clarify some terminology before moving on.

 ◆ Citizens are essentially NEO token holders and are considered ordinary nodes. A token 
holder is anyone who holds a cryptocurrency token and maintains an interest in the 
blockchain by voting.

 ◆ Delegates are bookkeeping nodes and elected to the role to file requests.

 ◆ Speakers are randomly chosen delegates to follow the citizens’ requests by proposing 
the requests.

dBFT is a unique consensus algorithm developed for NEO with what can be considered a 
perfect finality. Perfect finality means that all transactions are 100 percent confirmed to be final 
after the first confirmation.

Interestingly, the blockchain cannot fork with dBFT, and this can remove some friction for 
stakeholders. dBFT is totally focused on the enterprise since it was clearly built with both 
regulatory and business use cases in mind.

dBFT offers the following benefits:

 ◆ NEO offers immediate finality after confirmation as well as being an almost impossible 
protocol to launch a 51 percent attack.

 ◆ NEO has fast and efficient protocols since a new block on the chain takes between 15 and 
20 seconds.

 ◆ The NEO dBFT network cannot be forked and, therefore provides stability for 
participants.

dBFT has the following disadvantages:

 ◆ There is high centralization due to the low node count of the NEO network.

 ◆ Centralization is clear since the bookkeepers are controlled by the NEO council.

 ◆ The NEO network cannot actually be forked, which may be a concern if a disagreement 
occurs between members.

 ◆ The NEO user and developer bases are still small compared to Ethereum, which makes 
expertise harder to find.



130 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

NEO is a nonprofit community-driven blockchain project. It utilizes blockchain technology 
and digital identity to digitize assets and automate the management of digital assets using smart 
contracts. To find out more about NEO and dBFT, go to https://neo.org/.

Practical Byzantine Fault Tolerance
Practical Byzantine fault tolerance (PBFT) has been the most widely used permissioned block-
chain platform protocol at the time of writing. PBFT was introduced by Miguel Castro and 
Barbara Liskov at the MIT Laboratory for Computer Science in 1999. PBFT is also one of the 
several potential solutions to the Byzantine Generals Problem, which was discussed earlier in 
the chapter.

PBFT consensus decisions are determined based on the total decisions submitted by all the 
generals (nodes). PBFT addresses the challenges without the extensive expenditure of energy 
required by proof of work. It is important to note that PBFT works only on a permissioned 
blockchain and thus does not allow anonymity like in Ethereum.

PBFT has the main purpose of deciding whether to accept a piece of information submitted to 
the blockchain. Essentially, is the information being proposed from an honest and reliable source?

PBFT offers the following two benefits:

 ◆ Rapid transaction finality that does not wait for confirmations to log transactions

 ◆ Lower power consumption compared to PoW

PBFT has the following disadvantages:

 ◆ Initially designed for a limited use case because of the high load of network traffic 
between nodes

 ◆ Can be susceptible to sybil attacks where a single party can create or manipulate a large 
number of network nodes, compromising the network

Blockchain projects such as Zilliqa, Hyperledger Fabric, and Ripple currently are using PBFT 
as their primary algorithm or have it as a choice in their portfolio.

Istanbul Byzantine Fault Tolerance
Istanbul Byzantine fault tolerance (IBFT) is a hybrid form of BFT and is an efficient alternative to 
PoW, which is currently used in the Ethereum network. IBFT is an implementation of the PBFT 
algorithm with some significant modifications to the blockchain code. These modifications 
provide for benefits that include efficient settlement finality and reduced infrastructure.

For example, in its use case with Quorum, IBFT uses a pool of validating nodes operating on a 
private Ethereum network, which will determine whether a proposed block is valid to be 
proposed for addition to the blockchain network.

The next step in the process that occurs is that one validating node is arbitrarily selected as the 
proposer and will be responsible for constructing a block at the block interval. It then will share 
this block with the group.

Effectively, if a “super-majority” of the node validators accept the block to be valid, the 
accepted block is then written to the blockchain.

Lastly, at the completion of the consensus process, these validator nodes may select a new 
proposer. This proposer then will be responsible for providing the next candidate block at the 
next block interval in the process.



CoMparIng enTerprIse BloCkChaIn ConsensUs MeThods | 131

IBFT is a Byzantine fault-tolerant solution offering immediate transaction finality that reduces 
the required blockchain infrastructure that other platforms may require. IBFT offers substantial 
benefits when used on a private blockchain where the validator pool is trusted and held 
accountable.

Lastly, IBFT really provides for what is a predictable transaction processing rate that enter-
prise blockchain must have.

The most significant implementation of IBFT is in the Quorum blockchain.

Raft Consensus
Raft is a consensus algorithm that is designed to be easy to understand by most IT professionals 
in the sense that it has a simple ledger structure with little overhead. The main difference is that 
Raft has been simplified into relatively independent processes, which are known as 
“subproblems.”

The Raft processes are as follows:

 ◆ Raft provides for a leader election process, where a new leader is elected in case of the 
failure of an existing one.

 ◆ Raft provides for a log replication service for the leaders, which provides high availability.

 ◆ Safety is the process that is implemented if one of the servers has committed a log entry at 
a particular index and, comparatively speaking, no other server can apply a different log 
entry for that specific index.

Raft has provided several useful resources to help you learn Raft efficiently. For an interesting 
and interactive Raft visualization that you can view in your browser, visit https://raft 
.github.io/.

For more information about distributed consensus, the leader election process, and Raft 
processing, visit http://thesecretlivesofdata.com/raft/.

Figure 4.4 provides a visual of the Raft processing resource. As you can see, there are five 
servers in a Raft cluster that is running in a browser. What is interesting is that you can interact 
with the utility.

S3

S2

S1

1 2 3 4 5 6 7 8 9 10

S1

S5

S4

1

1

1

1

1

S2

S3

S4

S5

0.061s

1/100x

Figure 4.4 
raft consensus 
visualization overview



132 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

Raft offers the following benefits:

 ◆ Raft has a very simple ledger and network structure that you can comprehend quickly.

 ◆ Raft has been well known since it is a “sister” version of Paxos. Raft is used as a backend 
data structure for containers.

 ◆ Raft uses a randomized election timeout process that ensures that “split votes” are 
minimized.

 ◆ Raft consensus does not mint blocks unless there are pending transactions, which can 
provide for some efficiency.

 ◆ Raft transactions have a faster block time as compared to IBFT consensus used in other 
blockchains.

Raft has the following disadvantages:

 ◆ Raft has a somewhat limited use case in the sense that it is not used directly with 
cryptocurrencies.

 ◆ Raft also has a limited enterprise blockchain ledger that is available to work with signifi-
cant enterprise use cases.

The Raft consensus is an option used in the Quorum blockchain

Directed Acyclic Graph
Directed acyclic graphs (DAGs) may become more prevalent in ledger technology’s future based 
on several factors. Some of these factors are greater performance and significant scalability, 
which in reality blockchains do not do well.

A DAG is a very different data structure than what a blockchain is. A DAG has traditionally 
been used in computer science to solve challenges around data modeling and data analysis.

Before moving on, it is important to understand some definitions when discussing the DAG 
platform. DAG’s have some unique terms compared to other blockchain consensus methods.

The following terms are unique to DAGs:

 ◆ A web is a network consisting of nodes connected to each other with edges.

 ◆ An edge is a one-way connection point between one or more network nodes.

 ◆ Acyclic means that a transaction cannot encounter the same node for the second time when 
moving from one node to another node by following the edges of the network.

Generally, it can take 10 minutes to create one block, and it’s important to note that blocks 
cannot be created simultaneously. What is actually significant is that transactions can be running 
on different chains simultaneously, and this can provide better performance.

What is the difference between a blockchain and a DAG?
Blockchains are a very different data structure where a distributed ledger forms a linear chain 

of blocks of transactions in an immutable chronological order that is clearly timestamped. A 
DAG is effectively different since it is a network of individual transactions linked to any multiple 
other transactions.

A DAG does not transact serially like a blockchain rather in a form of a parallel ledger data 
structure.



CoMparIng enTerprIse BloCkChaIn ConsensUs MeThods | 133

A blockchain is a linked list of blocks, but a DAG is a tree where transactions branch out from 
one transaction to another. This is considered a graph that travels in one direction without cycles 
connecting the other edges. A simpler way to look at a DAG is a “web of network nodes” where 
each network node is interconnected but is running one-way communications to the other 
network nodes.

Figure 4.5 compares visually a typical blockchain structure to a DAG structure in Hedora 
Hashgraph. The structure of a blockchain is more linear and hierarchal as well. One of the main 
benefits of DAGs are that these networks are faster because of how the transactions are validated 
and then processed in a parallel approach. In a blockchain, transactions are processed in a 
serial approach.

DAGs offer the following advantages over a blockchain:

 ◆ DAGs are fast and can scale with more transactions.

 ◆ Transactions can be validated in a parallel or simultaneous manner, compared to a 
blockchain that validates in a linear fashion.

 ◆ Lower transaction fees may be realized because of efficiencies in protocols.

DAGs have the following disadvantages over a blockchain:

 ◆ Considered complex to learn from a historical perspective

 ◆ Limited uses cases where blockchains may not be appropriate such as with Internet of 
Things (IoT) data

Ledger platforms that use DAGs are IOTA, Hashgraph, and Nano.

BLOCKCHAIN HASHGRAPH

Figure 4.5 
Blockchain vs. hedora 
hashgraph data 
structures



134 | CHAPTER 4 UndersTandIng enTerprIse BloCkChaIn ConsensUs

Blockchain Consensus Evaluation
There are many more forms of consensus that are used in various platforms such as proof of 
authority (PoA), proof of burn (PoB), and many other variations of BFT consensus. For the 
purposes of this book, I have limited the discussion to the most common enterprise-ready 
consensus methods and blockchain platforms implemented in Ethereum, Quorum, Corda, and 
Hyperledger.

When making a design decision around enterprise blockchains and the appropriate consensus 
methods that can be used with a particular blockchain, it is critical to understand the three main 
comparison points between permissioned-based consensus and proof-of-work consensus.

Even with Quorum, Corda, and Hyperledger, there is some “modularity” that is supported 
around consensus. For example, in Quorum you choose between Raft, Quorum consensus, or 
IBFT consensus implementations. Choosing one consensus form over another may provide for 
better performance of transactions (speed), but when choosing IBFT, you may experience greater 
scalability.

The main features that require some consideration are speed, scalability, and finality. 
Generally, voting-based algorithms are advantageous in that they provide low-latency finality as 
compared to the following:

 ◆ Speed is the amount of time a transaction takes to complete.

 ◆ Scalability is a reflection of how many nodes the blockchain network can accommodate. 
Generally, scalability and speed are inverse.

 ◆ Finality is how long the voting-based algorithms are advantageous in that they provide 
low-latency finality.

Table 4.2 compares different types of consensus algorithms according to three main features 
that an enterprise needs to evaluate. Both permissioned consensus types (lottery and voting) 
provide better speed over proof of work. Finally, scalability is good in both proof of work and 
permissioned lottery-based consensus methods.

Choosing the proper consensus when designing your enterprise blockchain can be confusing 
at first, but the consensus choices are limited to two or three choices at best. Essentially, you’ll 
want to determine the proper blockchain platform and then consider the proper consensus 
method to address speed, scalability, and finality.

Table 4.2: Comparing consensus algorithms

Permissioned 
Lottery-Based

Permissioned 
Voting-Based

Standard Proof of 
Work (Bitcoin)

Speed good good poor

Scalability good Moderate good

Finality Moderate good poor



sUMMarY | 135

Summary
This chapter covered the most widely used enterprise blockchain and distributed ledger consen-
sus methods. Enterprise blockchains depend on a method of consensus for many reasons such as 
reaching an agreement on validating transactions or establishing trust. The consensus methods 
vary widely on how consensus is reached, how a stake is arrived at, the terminology that is used, 
and the blockchain for which it was developed.

Enterprise blockchains generally use a form of Byzantine fault tolerance or an approach to 
consensus such as distributed proof of stake. Proof-of-work consensus is used mainly in crypto-
currencies and from an enterprise perspective is expensive because of the cost of electricity to 
support mining. This PoW overhead is not required in enterprise applications because the nodes 
are trusted by the organization.

Proof of stake uses a different approach than the computational power in PoW. For example, 
the probability of creating a block and receiving the associated rewards is proportional to a user’s 
holding of the underlining token or cryptocurrency on the network. Proof of stake is an interest- 
based approach to handling a blockchain where a node’s interest is directly proportional to its 
investment.

Proof of elapsed time attempts to directly solve the issue of proof of stake, which will arbitrarily  
determine the members proposing blocks by guaranteeing that each member has a reasonable 
opportunity to offer a block. Hyperledger Sawtooth utilizes the proof-of-elapsed-time consensus 
algorithm that leverages Intel’s Software Guard Extensions to implement a leader-based lottery  
system.

Delegated proof of stake uses a real-time voting system and a reputational system to achieve 
consensus. The DPoS blockchain consensus protocol allows token holders to use their coin 
balances to elect delegates, called witnesses.

Delegated Byzantine fault tolerance is a consensus algorithm developed by NEO with perfect 
finality, meaning that all transactions are 100 percent final after the first confirmation, which adds 
to its high transaction capacity.

Practical Byzantine Fault Tolerance is the most popular permissioned blockchain platform 
protocol. PBFT was introduced by the MIT Laboratory for Computer Science in 1999. PBFT is one 
of the potential solutions to the challenging concerns of the Byzantine Generals Problem.

Lastly, Raft is a consensus algorithm that is designed to be easy to understand as well as 
utilize. DAGs are considered transformational since transactions are “linked” from one to 
another, meaning one transaction confirms the next, and it continues.

In the upcoming chapters, I will be covering some of the consensus methods in more detail, 
mainly regarding security, membership, and development concerns.



Chapter 5

This chapter covers the solutions sales cycles of typical enterprise blockchain engagements and 
how you as a VAR, IT vendor, or even solutions integrator can participate in the blockchain sales 
cycles. Blockchain solutions selling has a heavy focus on application development, compliance, 
and enterprise integration, so a focus on those areas is advisable. However, your organization is 
already likely helping clients in these areas of application development, compliance, and 
enterprise integration successfully, and therefore translating your existing skill base should not 
be difficult with the proper focused training of how blockchains provide value and can integrate 
with the organization.

Throughout the chapter, I will discuss specific details of selling blockchain solutions and the 
professional services that can come with the solution selling. Then I will dive into gathering 
requirements and identifying potential use cases.

The goal of the chapter is to give you a technical presales perspective on how to sell block-
chain services, software, and hardware. Part of my “mission” is to help enable you to sell 
blockchain solutions. I want to ensure that you are aware of all the following: historical refer-
ences, business and technical resources, conceptual and nonconceptual patterns, and lastly 
routine presales tasks such as RFPs, demos, whiteboards, readiness assessments, and proof 
of concepts.

NOTE Blockchains differ when it comes to sales cycles, margins, and vendor engagement.

Enterprise Blockchain Sales Cycle
Blockchain sales cycles can certainly mimic, in some cases, the sales cycles for enterprise IT 
hardware, software, and professional services. In some scenarios, the process of selling block-
chain solutions is more straightforward than for traditional IT solutions. This is because of the 
significant lack of valid production blockchain options, especially in the financial sectors.

However, in other cases, there may be some new aspects in solutions selling, especially when 
it comes to blockchain development. Regardless, whether you understand blockchain technology 
or not, your main goal should be to provide value to your customer. If this means this means you 
need to step out of the process and bring in a “blockchain developer,” then that should be 
acceptable to both your organization and your customer.

Enterprise Blockchain Sales and 
Solutions Engineering

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



138 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

In most complex sales cycles, you’ll need to go through a “discovery” phase where you 
discuss, understand, and then translate the customer requirements; then ideally you go on to the 
exploratory and engagement phases and perhaps the commitment phase as well.

Figure 5.1 shows the high-level sales cycle that is commonly accepted by IT-focused VARs, 
vendors, and integrators. Note that there is also a seven-step sales cycle that is used; however, in 
an attempt to focus more on the technical aspects, we will [concentrate] on the four steps that 
happen after the funnel work has been done.

This four-step process is consistently used for IT-focused solution selling as well as blockchain 
technology selling. When considering a solution to place in a prospective enterprise customer 
environment, these are the steps:

1. Identify a problem the client would like solved; in the blockchain industry, you will 
identify areas that blockchain technology could provide a solution for such as security, 
privacy, and compliance.

2. Investigate the causes of the problem and then build proposals for the customer on how to 
solve the problem.

3. Engage with the customer around possible solutions. In this step, I provide several 
options for the proposed solutions with benefits, costs, and risks. Providing the customer 
with these three facets will establish you as a trusted advisor.

4. Work with the customer and facilitate ways of validating the proposed solutions. These 
methods of validation could be technical, business, and legal validations. For the technical 
merits, use a demo, proof of concept, or even trusted customer references. For the business 
side, it’s important to work with return on investment (ROI), total cost of ownership 
(TCO), and any other customer metrics that will facilitate a sound decision. From a legal 
perspective, the corporate counsel will evaluate what is a myriad of regulations and data 
protection laws that apply to the blockchain applications. Corporate counsel has met with 
IT to avoid noncompliance, penalties, and other impacts.

Experienced sales executives understand that enterprise buying is a complex, consensus- 
building process that is rarely transparent and is usually lengthy. Selling blockchain and distrib-
uted ledger technology could take a few weeks or up to a year in my experience. It can be a 
lengthy process for several factors.

 ◆ Customers are still learning what exactly blockchains are and where blockchains may fit 
into the enterprise. Customers who are technically adept will be better prospects for 
blockchains.

 ◆ There are a limited number of uses for blockchains that have flexible enough use cases. If 
the organization cannot identify a specific problem that a blockchain can solve such as 
compliance, data integrity, cost efficiencies, and so on, then the sales cycle will likely stall.

Identify
Problem Investigate Engage Evaluate

Figure 5.1 
high- level solutions 
sales cycles



Blockchain rolEs (stakEholdErs) | 139

 ◆ Legacy applications may not integrate well and therefore present additional challenges. 
Can they be ported over easily or require middleware or reworking? Applications that are 
cloud native make good candidates for blockchain integration.

 ◆ Political challenges can arise from stakeholders, especially in the case where the stake-
holder’s roles may be in jeopardy.

 ◆ No two organizations are the same, even if they are both Fortune 100 financial institutions. 
Everything from political climates, training, corporate governance, business models, and 
so on, can present challenges to the sales cycle.

Blockchain sales cycles take patience, especially when the enterprise does not have an 
immediate use case, the budget, or technical capabilities on hand. Note that blockchain presales 
engagements are not at all similar to selling a cluster of network edge switches to a network 
engineer who already has established the enterprise use case to expand their network. Generally, 
in cases where the technical knowledge exists, it’s a “speeds and feeds” discussion, whiteboard, 
and pricing exercise for the sales teams working with the network teams.

Selling blockchain technology requires a significant interaction with the development group. 
Developers are different in the way they think than your typical network engineer, for example. 
They are detailed, clearly identify with coding languages, use specific jargon, and like to solve 
problems. Developers are also going to be the one group of stakeholders who know how an 
application works from start to finish. They understand the runtime environments, the database 
structures, integration with the endpoint services, and the logging for compliance, for example. 
When presenting to the development stakeholders, you’ll need to present a technical discussion, 
so you are well advised to bring talent who can discuss areas of focus. These areas include 
application programming interfaces (APIs) such as REST or Open APIs; development languages 
such as Go, Java, and Node; and integration options for distributed business applications that 
may run on smart contracts such as Enterprise Resource Planning (ERP), Know Your Customer 
(KYC), Anti Money Laundering (AML) and Customer Relationship Management (CRM) cross-
border payments, and so on.

The stakeholders who are developers in some organizations are in departments called dev, 
development, DevOps, or in one engagement I encountered emerging technologies. Therefore, 
you should know that the stakeholders who may be in a blockchain project are not exactly “one 
size fits all.”

It is also important to mention that stakeholders, decision-makers, or approvers will likely 
consist of the legal counsel and financial groups that blockchain projects can impact. You will 
likely want to brush up on compliance requirements before discussions with corporate counsel, 
which I cover extensively in Chapter 9, “Blockchain Governance, Risk, Compliance (GRC), 
Privacy, and Legal Concerns.”

In a nutshell, selling blockchain is a “development exercise” for the most part, and you must 
be knowledgeable as a sales organization to effectively position blockchains. In that blockchains 
and distributed ledgers are newer technologies with a limited knowledge base, your role as a 
presales engineer will be more “evangelist” or even a “trainer” to ensure that your prospects 
understand the value of the solution and how the solution will integrate into their organizations.

Blockchain Roles (Stakeholders)
It’s important to cover the roles that will likely have a “sales play” in blockchain and ledger- 
focused solutions. In this section, I’ll identify the stakeholders who will be part of the substantial 
discussions about blockchains.



140 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

This is important because in most cases blockchains are not a general hardware or software 
sale. It is also important to appreciate that solutions selling around blockchains could expand 
past the usual CIO, IT director, and network or database administrator you commonly work 
with. IT roles in this new world of blockchains, consensus, frameworks, smart contracts, and 
distributed applications are an evolving area of focus for enterprises. Some roles may require 
dedicated blockchain expertise, and some may only require that blockchain technology is a 
“nice-to-know” area of focus.

The following roles are commonly found in the enterprise blockchain arena. The definitions 
are provided more as a guide for general understanding, as one would likely expect that in some 
cases, titles and actual job responsibilities vary widely from company to company.

Blockchain Developer A blockchain developer is focused on developing smart contracts or 
chaincode, designing distributed applications (dapps), or integrating front-end user web 
interfaces that will interface with the blockchain network applications. Traditional developers 
who have advanced skillsets around Java, JavaScript, Python, Solidity, Go, or even C++ 
development experience do well in blockchain development. The demand for a solid experi-
enced blockchain developer has never been higher.

Blockchain Architect A blockchain architect is a client-facing role that essentially will collect 
the customer requirements, translate the requirements into a working platform, and turn the 
platform over to the blockchain developers to work on their smart contracts, dapps, and client 
applications. In many organizations, a blockchain architect can also be called a solutions 
architect or a consulting engineer.

Blockchain Administrator A technical lead handles the post-sales management of a 
blockchain platform. Generally, a blockchain administrator has managed other platforms such 
as cloud computing or telecommunications.

Blockchain Operator A blockchain operator is a role that handles the management of 
certificates and accounts and the permissioning of a blockchain. In smaller organizations, the 
blockchain operator and blockchain administrator roles might be merged.

Blockchain Legal Counsel In organizations that take blockchain compliance seriously, this 
role is required. The attorney (counsel) usually establishes “legal prose” for smart contracts 
and consortium partnerships, maintains compliance/governance requirements, and performs 
due diligence on various blockchain-related concerns. From what I have seen, in organizations 
that are focused on initial coin offerings (ICO), this role is focused on structuring deals.

Solutions Architect This is a technical role that is client-facing and is considered to be one of 
the most critical technical roles for most VARs, vendors, or resellers. The goal of the solutions 
architect is to take a blockchain solution and solve a business problem. The solutions architect 
and presales engineer roles often overlap.

Presales Engineer (Architect) This is a client-facing role that is critical to the organization 
and works in a “before the sale” capacity. They essentially pave the way for the more technical 
leads when applicable. The presales engineer is really focused on how blockchain products 
can translate into a solution and explain this to the customer. It is important to note as well 
that most large training companies and professional services organizations may also have a 
presales-focused role that is specialized on blockchain or professional services or 



it-BasEd salEs cyclEs | 141

 development. It is also extremely common to see a presales engineer or architect role be the 
same or overlap in responsibilities as a solutions architect. Presales engineers and architects 
are considered to be “revenue-generating” roles and thus critical to the organization. If you 
like people, want to actively generate revenue for the company, and get rewarded for this 
“front-line” participation, then this role could be for you.

Blockchain Marketer The blockchain marketer role is nontechnical and more focused on 
“relaying” the business benefits of the blockchain solutions and services to the prospective 
customers. This role usually is well represented at trade shows, conventions, and networking 
events. events, and is really focused on actively looking for leads and prospects for the 
company. In some smaller companies, for example, I have seen inside sales and account 
executives have the responsibility of a blockchain marketer.

Blockchain Project Manager This role is nontechnical and more focused on keeping the 
blockchain implementation on schedule as well as on budget. Generally, any project manager 
who manages IT projects will likely be successful in this area. The one area that I have found 
to be new for some project managers is understanding the complex processes of interfacing 
with cryptocurrency exchanges.

Blockchain Trainer This role is focused on enabling customers to work with blockchain 
technology. A blockchain trainer should be both technical and customer centric. Generally, 
technical requirements will be focused on networking, application development, business 
processes, and training, but also could be but also could be responsible for setting up proofs 
of concept.

IT-Based Sales Cycles
Although blockchain technology may be complex, in reality the blockchain sales cycle follows 
the typical sales cycle you follow to sell telecommunications gear, data storage arrays, cloud 
computing platforms, or CRM solutions.

The seven steps shown in Figure 5.2 make up a typical sales cycle process (although some 
vendors use an eight-step system). For this book, I focus mainly on the blockchain sales cycle,  
for which there is no official sales cycle. However, I provide insight into how I handle different 
parts of the sales cycle to adapt it to the blockchain technology. After the sales cycle, I then move 
on to the design and implementation phase.

Every IT vendor, systems integrator, and consulting firm has its own view of what the sales 
cycle world is. After working successfully for more than a decade for several large organizations 
(Brocade Communications, Hitachi Data Systems [HDS Federal ViON], 3Par Data, and 
Dimension Data), I realize that every industry vertical looks at solutions selling in a vastly 
different manner, which drives revenue differently. That is, some organizations are front-heavy 
with a dedicated team approach (1:1 ratio of sales executive and sales engineer/architect), 
whereas other organizations are less heavy (two or more sales executives to one sales engineer/
architect). The ratio may be as high as 5:1, which can be directly related to the industry vertical or 
geographic region.

Presales engineers often sell solutions that are considered expensive and also as capital 
expenditures such as IT networking equipment or data storage hardware or software. It is 
common as well to spend a considerable amount of time in most of the stages of the sales cycle as 



142 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

a sales executive would. This can be different from sales cycles of less expensive products or 
services where the sales cycle may be traversed more quickly. Presales engineers really should 
not be fully engaged in every phase but clearly communicated with by the account executives.

Generally, as a presales engineer, it’s important to get involved in the discovery aspects of what 
the pain points are for the customer and what is creating these pain points. An experienced presales 
engineer should know when to get in and when to get out—for example, when to turn over the 
technical aspects to a blockchain-focused solution engineer. Basically, know your boundaries as a 
presales engineer and engage the post-sales teams as needed.

The following phases, to identify both sales and technical aspects, should be handled effi-
ciently, effectively, and professionally to ensure that the customer receives what they need exactly 
when they need it.

The areas of a seven-phase IT sales cycle are defined with my own input for each:

1. Prospecting (relationships): This step involves obtaining client leads through various 
means such as conventions, trade shows, and even referrals from other customers. 
Traditionally vendors have group that can provide leads as well a qualified inside sales. 
This phase is more about establishing the relationship and building trust with the cus-
tomer. Lastly, requests for proposals are another way some companies (especially in the 
government and education sectors) may prospect for customers.

2. Preparation (intelligence gathering): This step involves preparing to meet with the 
customer either in person or online, gathering information about the customer and the 
enterprise. Collect some use cases that you can leverage for their industry (financial, 
energy, insurance, government, and so on). Also, a great account executive should be 
identifying pain points, identifying any additional stakeholders and business decision-
makers, and perhaps identifying project funding.

Following Up

Closing the Deal

Prospecting

Handling Customer
Objectives

Preparing for
Contact

Approaching the
Prospect

Preparing Solutions

Figure 5.2 
The seven sales 
cycle phases



it-BasEd salEs cyclEs | 143

3. Approach (initial meeting): In the approach stage, your account executive will handle the 
initial face-to-face meeting, webinar, or conference call. The reality is that these initial 
meetings routinely do not include a presales engineer. In some cases, you as the sales 
engineer should be “qualifying” the customer and your organization’s solutions set. As 
part of this phase, the technical decision-makers should be identified.

4. Presentation (second meeting): During this phase, you as a presales engineer will likely 
be demonstrating how the blockchain solution works through at least a presentation, a 
whiteboard, and more than likely a demo or proof of concept (POC).

5. Customer objections (addressing): Perhaps the most challenging part of the seven steps 
of a sales cycle for a sales team is handling objections. Handling objections is actively 
listening to your prospect’s concerns and addressing them in a manner that will provide 
value so they can make a decision. As a sales engineer you should be working on the 
“technical close,” which is the point where you have provided enough technically  
valid information around the requirements that the customer feels they can make a 
favorable decision.

6. Closing the deal (purchase order): This is the stage when the the purchase order (PO) is 
signed by the stakeholders and the sales team management. During this stage the imple-
mentation details are worked out, and any required implementation teams are called in.

7. Follow-up (supporting the relationship): After your purchase order is signed and weeks 
after the implementation team is on the ground working with the customer, you should 
consider it imperative for a sales team to be aware of how the project is going. The sales 
team should demonstrate to the customer that they are there for them after the PO is 
signed and the blockchain is implemented.

Presales Tasks
As part of a sales cycle, it is clearly evident that sales are being driven by a sales team, and you 
need to appreciate the level of effort that can come into play for the sales team to close a deal. 
Before any purchase order is received, it is expected that one if not all of the following tasks will 
be performed to consummate the closing of the blockchain deal:

 ◆ Requests for proposals

 ◆ Identifying, analyzing, and managing stakeholders

 ◆ Blockchain readiness assessment workshops

 ◆ Performing demos

 ◆ Using vendor demo tools

 ◆ Performing blockchain readiness assessment workshops

 ◆ Whiteboarding solutions

 ◆ Performing proof of concepts

 ◆ Enabling the sales process with blockchain as a service



144 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

Request for Proposals
A request for proposals (RFP) is commonly used in specific industry segments as the main 
vehicle for organizations to address procurement for their enterprises, which from a cost 
perspective is for a mandated cost.

Procurement is also referred to as an acquisition in the U.S. federal sector and is regulated by 
statutes dealing with U.S. federal contracts and the U.S. federal contracting process. Titles 10, 31, 
40, and 41 of the U.S. Code are the common references for U.S. federal contracting.

An RFP, whether placed on the market by military, intelligence, or civilian agencies, is known 
at the federal, state, and local levels as a solicitation from the government.

Even large commercial companies will solicit bidders for an RFP. You as a solutions provider 
or potential vendor may be participating in a blockchain RFP, so let’s clarify some terms before 
getting started with RFPs.

 ◆ The solutions provider giving a response to the RFP is called the bidder.

 ◆ The customer placing the RFP out for bid is called the solicitor.

A portion of my work experience for more than a decade was focused on government 
contracting (military and civilian agencies) in the metro Washington, DC area. As part of this 
experience, can assure you that your only way into most federal, state, and local entities is 
through the RFP process.

I refer to the RFP as a doorman or gatekeeper since you have no choice but to participate in 
the process. Requests for information (RFIs), requests for quotation (RFQs), and RFPs can be a 
time-consuming and essentially complex process for both the solicitor and the bidder.

Figure 5.3 illustrates the standard high-level RFP workflow process steps. The workflow starts 
with an RFI, which is an information-gathering request. Then it proceeds on to the RFP, which is 
the work for the sales team. Lastly, some companies may bypass the RFI and RFP processes and 
just publish an RFQ, which is a pricing exercise.

The procurement process also entails a lengthy workflow for what is referred to as procurement 
activities, which are one of the following: requirements development, pre-award activities, and 
post-award activities. These processes are usually complex for both the solicitor and the bidder 
because of extensive government procurement processes, regulations, and bidding processes that 

(RFI) - A Request for Information (RFI) is a document issued for
gathering information from potential suppliers of goods or services.

(RFP) - A Request for Proposal (RFP) is a document issued by a business
or an organization to request vendor bids for products, solutions, and

services.

(RFQ) - A Request for Quote (RFQ) is a document used when the
customer knows what they want but requires pricing from the vendors.

Figure 5.3 
procurement workflow 
process steps



it-BasEd salEs cyclEs | 145

are managed by the General Services Agency (GSA). There is also a consistently challenged 
scoring system that the GSA uses to rate proposals’ bids. These challenges are known as protests 
and are usually a result of the GSA’s evaluation of the company, which can result in a company 
score that is less favorable to winning the bid.

When an organization decides to proceed with a bid for a government contract, for example, 
there are some industry best practices for assessing and responding to an RFP. RFPs are well 
structured, and from a bidder perspective, they require a team effort to complete thoroughly. 
Note that there are red teams, blue teams, green teams, gold teams, and pink teams, and each 
team has specific responsibilities around the proposal development. These teams are essentially 
a logically represented layered approach to the maturity level of the state of the proposal.

Before even thinking of taking on a blockchain-related RFP, your organization should ensure 
that they have the right expertise on board and also be willing to fail. From the few blockchain 
RFPs that are out there, it is important to realize that some of these organizations seem to be 
using the RFP process as more of an educational process than a procurement process. This is not 
intentional probably; rather, the solicitor might not be educated in blockchain and therefore not 
understand the real problems to be solved.

In a nutshell, responding to RFPs can be a spectacular way to waste your companies’ 
resources if you’re not carefully reviewing the proposal details. For example, having one 
response that might not be clear to the solicitor can rule out your organization as qualifying or 
even winning the procurement whether you’re a sub or the prime. In the world of both commer-
cial and government contracting, a prime is the primary contractor who holds the contract 
directly with the customer. A sub is a subcontractor who works directly for the contractor, not the 
customer. The prime contractor and subcontractors will likely work together in propos-
ing the RFP.

You need to clearly appreciate as well that most RFPs are not worth even considering compet-
ing or bidding for if the customer has not established a proposed use case. Your organization 
likely needs to consider the limited resources available and the resources spent on competing, 
especially if the government really does not know the problem it is trying to solve.

RFPs require detailed technical responses, and these technical responses must address the 
customers’ requirements appropriately. The RFP will certainly provide a list of questions that 
each bidding company must respond to. These could include business-focused responses, for 
example, prior experience or company processes, to more technical responses including what 
type of solution is proposed and even detailed equipment lists.

An RFP may be distributed to all the companies identified during the RFI process or might be 
made public to solicit additional bidders. During the RFP process, the most important task is the 
proposal development. This is where the responding company (bidder) will respond to the RFP 
with its proposed solution.

RFP questions are often detailed technically, and the bidders need to place great care in how 
they respond to every question. The responses will provide a thorough look at the bidders and 
their prospective solutions to the solicitor. On the other hand, the RFI will ask a standardized set 
of questions concerning your company’s history, technical capabilities, partnerships, business 
plans, ownership, and other key details that are less technically detailed.

When it comes to procurement processes, RFPs may or may not be part of your organization’s 
business plan. If they are, then learning how to respond should be a priority and so should 
finding resources that provide insight into your specific organization’s markets such as educa-
tion, government, or commercial.



146 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

Responding to procurements can be time-consuming, even if you’re experienced. When consider-
ing whether to respond to a U.S. federal solicitation, there are strict requirements, and it is advisable 
that your organization retain the business and technical talent to create the appropriate responses.

Identifying, Analyzing, and Managing Stakeholders
Every organization has more than one stakeholder in a project or procurement. Generally, as a 
project management best practice, if the project is undertaken due to a contractual agreement, it’s 
advisable that the sales team review the contract agreement to find the stakeholders who will be 
part of the sales process.

A stakeholder is a person who may be affected in some manner (directly or indirectly) by a 
given project. These stakeholders could be employees working on a project, organization, or even 
partner companies. Stakeholders have different levels of influence, such as being a technical 
influencer or a business influencer.

Stakeholder identification is, of course, critical to ensure both the sales team and the customer 
are not wasting their time. Identify both the decision-makers and the end users. The decision- 
makers need to be involved and should ensure that there is reasonable commitment to engage 
with you as necessary.

Figure 5.4 presents the stakeholder process workflow. When identifying stakeholders, one of 
the best places is to identify roles in the organization. The second step is analyzing; you want to 
understand the role of the stakeholder and understand how they can influence the decision of a 
blockchain solution. Lastly, you must manage your stakeholders in a manner that facilitates your 
role as a trusted advisor, and this means responsive, effective, proficient, and honest 
communication.

The stakeholder workflow is straightforward. You must first identify who the stakeholders are 
and then analyze them to determine what level of authority they have. For example, are they 
technically driven or more business focused? Then you can move on to the last part of the 
workflow: manage. You engage the stakeholder in the appropriate fashion, such as with meet-
ings, whiteboards, proposals, and then meet the appropriate level of expectations.

As a trusted advisor to your customer base, you must ensure that you represent your organi-
zation as professionally as possible. One of the best ways to do this is to clearly understand the 
stakeholders and what role they play in the organization understanding the stakeholders clearly 
should this will help you to not only set expectations appropriately but also meet or exceed 
them. One of the last things you would want to do, of course, is “over promise and under 
deliver,” which is a common quote that is used in sales training.

Identify

Manage Analyze

Figure 5.4 
stakeholder pro-
cess workflow



it-BasEd salEs cyclEs | 147

Blockchain Readiness Assessment Workshops
A blockchain readiness assessment workshop is focused on understanding where the customer is 
in the adoption of blockchain technologies. Generally, a readiness assessment is also known as a 
blockchain workshop by some vendors and partners.

A workshop is exactly what you would expect to offer as a vendor, VAR, integrator, or 
services firm to help facilitate the knowledge transfer in a highly interactive environment. 
Whiteboarding is a likely requirement when it comes to assessments and establishing require-
ments. Whiteboarding is critical to identifying problems and presenting solutions in an interac-
tive manner that is visual for both the vendor and the customer.

Generally, in your role as an engineer you will want to work with the customer to establish 
the potential blockchain use case for the organization. As part of the process, you will also 
identify requirements, educate the customer, and provide a summary report with an actual use 
case that may be applied later.

During a blockchain workshop, you want to review at least the following steps:

 ◆ Identify the potential opportunities for blockchain technologies by engaging with the 
stakeholders to facilitate discussions around potential solutions to problems.

 ◆ Identify and document the potential scale of the blockchain use case for the organization. 
Some organizations may not be ready for a blockchain as an individual unit or depart-
ment. Potential customers will be more likely to benefit from working as a “consortium” 
where sharing the benefits and costs could provide direct value.

 ◆ Document the stakeholder’s functional requirements, which will specify what a block-
chain should accomplish from a business perspective such as compliance, reporting, 
auditing, authorizations, or business focus.

 ◆ Document the stakeholder’s nonfunctional requirements. The nonfunctional requirements 
specify what the system should do from a performance, reliability, security, or technical 
standpoint.

 ◆ Determine customers’ perceived risks for blockchain implementations.

 ◆ Document any compliance requirements such as GDPR, PCI, SOX, and HIPPA, for 
example, since these requirements are a significant part of a blockchain use case.

 ◆ Identify any performance requirements such as transactions per second (TPS). Blockchain 
is not a high-performance platform as compared to client-server technologies.

 ◆ Provide your customer with any expected next steps in the evaluation process such as 
follow-up calls or quotes.

Performing Demos
Demos are a required part of most roles for presales-focused engineers. Demos are different in 
many aspects from proofs of concept, which are performed at a later stage in the sales cycle. 
Demos need to be direct, timely, efficient, and kept under 30 minutes.

When it comes to performing demos, these are some best practices to appreciate:

 ◆ Perform the demo on a stable platform that you maintain if possible, whether on your 
own platform or in a cloud blockchain as a service.



148 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

 ◆ Blockchain demos are “software” focused and in most cases should maintain a “story-
board” around this unless required otherwise. A storyboard is an approach used to relay 
the features and functions in a logical manner.

 ◆ Identify specific concerns, features, or functions that are of interest to the customer, and 
avoid a “standard” demo process if possible.

 ◆ Keep demos to less than 30 minutes to avoid losing the attention of the customer.

 ◆ Identify your customer’s stakeholder base ahead of time and provide a demo that will 
focus on the audience. For example, a CIO will have different interests than a cloud 
developer or network engineer.

 ◆ Provide an interactive demo if the customer wants to “drive” the blockchain transactions.

 ◆ During the demo, display how the solution resolves “pain points” that the customer 
identified in previous discussions.

When it comes to performing demos, I like to set up a blockchain as a service (BaaS) with a 
basic configuration to address the customer interests and provide value around reducing “pain 
points.” For example, if the demo is about Hyperledger Fabric and you’re running this in IBM 
Bluemix, you’re basically ready to go. If the customer base is made up of developers, I walk them 
through how to deploy chaincode (smart contracts). On the other hand, if the customer base 
involved is more executive level, then I want to focus on creating efficiency, showing the ease of 
use, and discussing any ROI/TCO savings that could be accomplished with the solution.

Figure 5.5 shows the interface to start the blockchain service in the IBM Blockchain Platform.

The IBM Blockchain Platform interface enables a sales engineer, developer, or customer to 
start a Hyperledger Fabric blockchain network in only a few clicks. You can see that the service 
requires a service name, region, and organization to start a blockchain network in the IBM 
Blockchain Platform. When performing a demo or proof of concept, you can get started in 
minutes, and this could provide significant results for organizations.

REFERENCE For more information on performing iBM Baas, refer to chapter 7, “Blockchain as 
a service.”

Figure 5.5 
iBM Blockchain  
platform



it-BasEd salEs cyclEs | 149

Using Vendor Demo Tools
Some vendors also have additional tools that can show your customer how the interface works, 
how transactions occur, or how to deploy a node. Having a demo tool available that you can run 
on your laptop can be invaluable in some cases.

R3 Corda provides a solid demo tool called Demobench. Demobench is a stand-alone desktop 
application. The goal of Demobench is to make it easy to configure and launch local Corda nodes 
on your desktop. It is very useful for training sessions, demos, or just experimentation of Corda.

Figure 5.6 shows the network map in Corda Demobench. This specific page is called the Node 
Explorer, which can be used locally on your laptop. It deploys a JVM and runs an instance locally 
specifically for demos.

Whiteboarding Solutions
Whiteboarding is one of the most critical skills a customer-facing engineer can have. 
Whiteboarding is a powerful sales tool that can provide insight to the customer about your 
understanding of their environment and also provide insight to the customer about the proposed 
solution. Whiteboarding should clearly build up the decision-making process for the customer in 
easy-to-understand workflows, diagrams, and figures.

Whiteboarding is best approached by a technical engineer who can relay the proper visualiza-
tion of component integration, network connections, and application gateways.

As part of a whiteboard session, a discussion about customer pain points is recommended, 
and then you can visually map them to a specific application. Understanding the challenges and 
customer requirements deeply will certainly facilitate solid discussions about how blockchain 
solutions can solve their problems. Remember, whiteboards are social interactions that are visual 
outlets for recognizing customer pain paints. Proposing solutions should be secondary once the 
customer knows you clearly understand their pain points.

Figure 5.6 
corda demobench



150 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

Performing Proof of Concepts
A proof of concept is a technical exercise most sales engineers will be involved with at one time 
or another to help identify the specific performance, security, and other factors such as usability 
that the customer is trying to establish that will work for their use cases.

A POC is essentially a realization of a certain method or idea to demonstrate a solutions 
feasibility. It’s a demonstration process in principle that is usually a “visual” process for the 
customer to establish that the solution could work. This section contains my best practices 
with POCs.

First, when I am performing a proof of concept, the critical thing I do is to discuss with the 
sales team that the customer has been vetted and has a procurement viability. (Has the customer 
been vetted financially?) As a best practice, your organization’s account executives (AEs) should 
be vetting the proper leads and then following up with appropriate stakeholders to ensure that a 
POC is a valid and proper exercise for both the customer and the sales organization. From my 
experience, it’s a wise decision to question the AE about customer validation to ensure that a 
POC is in the company’s best interest from technical and business perspectives. It’s one thing to 
perform a packaged 30-minute demo remotely, but it’s a totally different situation to spend a 
weekend setting up for a specific use case and two days on-site. You as an engineer are fully 
responsible for your time and should want to ensure you’re not “fishing in a dead lake.”

Second, I request that the customer and the sales team work directly with me to establish clear 
“success criteria” for the POC. This can be done via a conference call, for example, before going 
on-site. The POC must be clearly defined for you as an engineer; you must be able to state the 
goals and the desired results that are the success criteria. You can get in your car and drive 
aimlessly, or you can get in your car and have a destination. It’s your choice to control the POC 
you’re running, and I suggest you’re clearly identified as the driver.

Lastly, I like to confirm with the sales executive that they have commitment from the customer 
that if we deliver on the success criteria, we will win the procurement. If the expectation is not 
set correctly with the customer, then it shows the sales team is weak, and you as an engineer may 
very well be involved in another exercise in futility.

Generally, you are being asked to perform a POC for a reason. Some of the common reasons to 
perform a POC are the following:

 ◆ To show the customer the functionality of the solution as well as how the solution solves 
their pain points

 ◆ To remove some of the risk of the solutions procurement for your customer

 ◆ To leverage the procurement process and establish trust with the potential stakeholders

Enterprise blockchains have different use cases, limitations, and features that as an engineer 
you need to be aware of. When considering a blockchain POC, it’s important to identify the 
blockchain architecture as well as the application stack. The application stack is where the 
complexity can come in. The complexity could involve integration of the end-user applications, 
commercial APIs, decentralized and open source applications, or even compliance implementa-
tions. For example, Hyperledger Fabric is based on a three-tiered architecture. The tiers of 
Hyperledger Fabric are the blockchain network, chaincode, and client application. When 
performing a POC, your role as a sales engineer may very well be to install chaincode. Chaincode 
can be written in one of three development languages: Go (Golang), Java, and Node.js.

Developing applications and porting it to the blockchain platform, though, of course, are the 
responsibilities of the customer development team. In Chapter 10, “Blockchain Development and 
Programming,” I cover this area of development in more detail later in the chapter.



it-BasEd salEs cyclEs | 151

Figure 5.7 provides insight into the three layers of the Hyperledger Fabric development stack. 
Hyperledger Fabric at the networking infrastructure layer is focused on connecting the block-
chain network to the APIs and integrating the nodes with their smart contracts. Chaincode, SDK, 
and APIs are the “middleware” for putting together blockchain network with the end-user 
application.

The lesson learned here should be that POCs can be a rewarding opportunity to work with the 
sales team as well as the customer to provide value around enterprise blockchains. Before 
executing on a POC, you want to ensure customer stakeholder buy-in and also ensure that valid 
“success criteria” have been identified.

Enabling the Sales Process with Blockchain as a Service
As a well-traveled cloud architect, I can assure you that one of the greatest enabling “gifts” given 
to any IT sales organization is blockchain as a service (BaaS). This is also known as a blockchain 
platform as a service (PaaS), for example, in the world of IBM Bluemix.

Sales organizations can consume a cloud service for little or no CAPEX funds and utilize the 
cloud for their POCs, demos, and training around blockchains such as Corda, Hyperledger, and 
Ethereum. Sometimes there really is no need to run to the C-level suites to request funding for a 
CAPEX expenditure for a blockchain infrastructure. Account executives know that requesting 
CAPEX funds in just about any type of company of even modest size is a time-consuming and 
frustrating process. In reality, it is likely a series of time-consuming processes from my 
experiences.

In 2009, I remember selling 3PAR data storage arrays to the commercial sector in the 
Washington, DC metro area. These 3PAR arrays were inexpensive compared to an EMC or HDS 
array, with the same number of gigabytes or terabytes. We were talking a $50,000 deal versus an 
$800,000 deal, and we were performing somersaults to obtain a purchase order. In my opinion, 
you need to understand margin and the cost of a customer acquisition, which I cover in 
Chapter 6, “Enterprise Blockchain Economics.” A root canal could be considered less stressful.

Some companies can even spin up a BaaS for less than $100 USD. It can even be free if you can 
use “promotional credits” or an “always-free” tier that some providers allow.

In summary, you can also use the resources in the cloud for demos, proof of concepts, and 
even during training. I like to perform demos as well during a readiness assessment just to get 
the techies thinking and comparing cloud services to blockchain services. To be honest, utilizing 
a blockchain as a service is not for every sales organization, and having a dedicated platform can 
provide efficiencies as well as benefits in many respects when you have both the use case and the 
transaction volume to justify a substantial investment. A solid use case to having a dedicated 
blockchain services team, for example, would be when the larger consulting firms, VARS, and 
vendors do invest in their own dedicated in-house private clouds and can expand services to 
include a blockchain.

End-User Application

Chaincode, SDK, and API

Networking Infrastructure

Figure 5.7 
hyperledger Fabric 
development stack



152 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

Selling Enterprise Blockchain Solutions
One of the challenges of selling a blockchain solution is to not oversell the benefits of said 
blockchain solution. Blockchain technology is still in the “adopter” phase in some markets, and 
therefore it can be “oversold” as a solution that solves every enterprise challenge. I have seen 
many blog posts and listened to many convention presentations about how specific blockchain 
solutions are solving just about every problem, and I would give most of them an A on market-
ing but an F for viability.

The reality is that blockchain technology is limited in solving problems, providing efficiencies, 
and establishing robust use cases. You will need to engage both your company’s business and 
technical experts when selling blockchain solutions. For example, if the customer has a use case 
for supply chain management or compliance, these prospective use cases may be great for 
establishing a use case for immutability and transparency, but the use case may not effectively 
provide the customers with performance and security requirements.

Requirements Gathering
It is critical to capture enough requirements to effectively identify the software solution being 
built. When gathering these requirements, ensure that they are testable. For example, a require-
ment that states “The solution must process more than 200 transactions per second (TPS) at peak 
workload” is clearly viably testable. On the other hand, a requirement that states “The solution 
should be really high performing to the stakeholders” does not clearly show how it can be tested 
nor lend itself as a viable requirement.

Your blockchain solution will likely entail some significant software design and development 
but also entail some hardware requirements and perhaps a blockchain as a service solution. From 
a historical perspective, you need to understand what the typical best practices have been 
focused on for requirements gathering. These requirements are identified as functional require-
ments and nonfunctional requirements. Software system functional requirements state how the 
solution should accomplish the proposed end results, whereas nonfunctional requirements will 
determine the constraints on how the solution will accomplish these end results.

Let’s define these requirements more specifically and provide an example of each.

 ◆ Functional requirements will specify functions that a solution, a system, or a specific 
system component must be able to accomplish for the customer or provide a viable use 
case for. These functional requirements provide technical details on how the system will 
accomplish the criteria stated.

For example: The stakeholders in the company identify that the e-commerce web application 
must provide an easy-to-use shopping cart experience that will be intuitive for the consumer to 
use, highly secure, but also high performing with the goal of increasing revenue for the company.

 ◆ Nonfunctional requirements are the requirements that specify the criteria that will be 
established to gauge the operation of a system or its components rather than specific 
routines. These nonfunctional requirements define external constraints, system restric-
tions, and other technically specified outcomes. These nonfunctional requirements help to 
determine the success or failure of the project.

For example: The company user base identifies that the e-commerce application will utilize open 
source solutions from Company A, which provides a hosted e-commerce solution. This solution 
with an industry-leading SaaS platform integrates “Shopify” shopping carts and provides for 
more than 2000 TPS with enterprise SSL certificates as part of an integrated solution.



it-BasEd salEs cyclEs | 153

It is also important to note that there are two main categories of nonfunctional requirements.

 ◆ Execution qualities, for example, are focused on performance and usability, which are 
considered observable since we document this.

 ◆ Evolution qualities are testability, maintainability, extensibility, and scalability and are 
embedded in the static structure of the software stack.

The IEEE-Std 830 – 1993 clearly states “13 nonfunctional requirements” to be absorbed into 
software requirements documentation. Figure 5.8 shows the 13 requirements as specified by the 
Institute of Electrical and Electronics Engineers (IEEE).

IEEE is a world-renowned nonprofit professional organization founded by engineers in 1884. 
The main purpose of the organization is to consolidate ideas dealing with electrotechnology. The 
IEEE plays a significant role in publishing technical works, sponsoring conferences and seminars, 
providing accreditation, and developing standards.

You can see that there are 13 blocks in the nonfunctional requirements list recognized by IEEE. 
For the purpose of this book’s scope, I won’t detail each of the 13 nonfunctional requirements. If 
you are not familiar with these IEEE nonfunctional requirements, I recommend finding out more 
from IEEE by visiting https://ieeexplore.ieee.org/document/392555.

A blockchain solution is a software solution with aspects of computer networking, computer 
security, and business such as compliance. Historically, a software system’s functional require-
ment states how the solution should accomplish something, whereas a nonfunctional require-
ment will state the constraints on how the solution will accomplish something.

Performance
Requirements

Interface
Requirements

Resource
Requirements

Acceptance
Requirements

Security
Requirements

Portability
Requirements

Quality
Requirements

Reliability
Requirements

Maintainability
Requirements

Safety
Requirements

Operational
Requirements

Verification
Requirements

Documentation
Requirements

Figure 5.8 
iEEE 13 nonfunctional 
requirements



154 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

Table 5.1 shows some of the common blockchain-related functional and nonfunctional 
requirements that a blockchain solution commonly addresses. If your customers are asking about 
technical specifications, such as which type of consensus is being used, they are concerned about 
the nonfunctional requirements.

With blockchains there are some clear requirements that can be specified, such as consensus, 
certificates, and protocols. However, as with every technology, there are also requirements that 
are not quantifiable, meaning that the measurement is not something that can have a number 
assigned to it. Some examples are the user experience, ease of use, or trust in a company brand.

Requirements Trade-Offs
As with anything in life, especially engineering software and hardware systems, solutions, and 
components, you can expect trade-offs in your design. Generally, you need to expect trade-offs 
between performance, security, and resiliency.

Triangles are desirable for understanding trade-offs in three dimensions. Figure 5.9 shows the 
three design trade-offs to understand in the design of a blockchain.

Performance in blockchains is focused on transactions per second. Security is focused on the 
risks that may be realized with a platform, such as vulnerabilities. Lastly, resiliency is focused on 
how the blockchain platform will be available if a network node goes down and is sometimes 

Resiliency

Performance

Security

Figure 5.9 
design trade-off triad

Table 5.1: Examples of blockchain functional and nonfunctional requirements

Non-Functional Functional

how a system does its job and attributes. What a system does or accomplishes.

technical specifications Business requirements

transaction log data redundancy compliance requirements

transaction log maintenance capacity Management

transaction processing with peer to peer gossip protocols Enterprise Blockchain performance

distributed ledger version data transparency

user interface intuitive ease of use

practical Byzantine Fault tolerance (pgFt) protect against malicious peers

utilize x.509 certificates Ensure secure membership



it-BasEd salEs cyclEs | 155

compared to availability. For example, if your proposed blockchain solution is using Hyperledger 
Fabric and your design is using eight nodes/peers in a New Jersey data center, your deployment 
is very local with no geographic resiliency. What happens if the power grid goes down? What 
happens if there is a weather event? Localized blockchain networks perform as efficiently as 
possible but provide no resiliency against regional disasters.

When you need to extend your blockchain and deploy additional nodes/peers, then you must 
consider your new location and the possibility of inducing some latency into your blockchain 
network. The performance you may have had would not be the same as expected. You now have 
a blockchain network that is geographically resilient but is not performing with lower transac-
tions per second because of the additional induced network latency.

Another common trade-off is around consensus methods (algorithms) and the commonly 
consistent issues with these. For example, some consensus methods are strictly used in permis-
sionless blockchains such as proof of work (POW). In a permissionless blockchain, you’re 
essentially giving up your privacy and security and then dealing with performance issues. In 
permissioned blockchains, your costs and responsibilities are greater, but you’re also gaining 
security, privacy, and, in most scenarios, performance benefits.

Table 1.2 compares public and private blockchains. It’s important to clearly relay these 
differences in design to the customer.

Whether you decide to implement a permissionless or permissioned blockchain, there will be 
trade-offs. You must weigh the trade-offs in blockchain design as well and choose accordingly. 
When it comes to requirements gathering and also the blockchain design, there are significant 
differences between a public blockchain and a private blockchain. For example, if you are 
discussing KYC, which would of course require identity management as a requirement for the 
customer, then you would rule out a public permissionless blockchain, since you would not have 
a mechanism in place to “know your customer.”

Technically Qualifying a Blockchain Opportunity
As a presales engineer, you may be the sole technical expert in blockchain technology in your 
sales organization, or you may not be. Regardless, you likely will want to control your time.

Qualifying blockchain opportunities is a must for ensuring that your time and company 
resources do not get misplaced. One of the challenges that can occur is when you have a sales team 
or account executive who fully relies on you to qualify the customer for every possible solution. 
When initially considering if a potential blockchain opportunity is qualified, I examine the following:

 ◆ Is the customer’s potential use case a “conceptual fit” where a blockchain is a valid use 
case? For example, does the customer require a compliant immutable record of customs 
declarations that will need to be retained for audit? Or perhaps the customer does not 
require a high TPS performance use case for their logistics application. Basically, are the 
properties of a blockchain solution clearly understood, and can they be applied to the 
customer use case? Determining the “conceptual fit” should be one of your main goals.

 ◆ Does this customer have stakeholder buy-in? For example, is the current database 
application that has been identified as being phased out a technical and business challenge 
that can be overcome by the enterprise? You need to understand if the customer has an 
environment favorable to new technologies.

 ◆ Does this customer have one of the industry use cases that have been historically viable, 
for example, with competitors, and can this past performance provide some insights into 
the potential benefits and use case validation? Can you actually take the use case and 
match it up to another company that has documented blockchain success? Doing this 
makes the solution selling somewhat more convincing to the customer.



156 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

Blockchain Decision Workflow
When you are working with a potential customer on whether the blockchain is going to be a 
valid solution, it’s really important to understand that as an engineer or an architect you need to 
follow a workflow as well as go through a checklist of potential areas that can make or break a 
blockchain being a good use case.

The IEEE decision tree provides an easy-to-understand workflow to making a “considera-
tions” decision on whether your use case would benefit from a blockchain. One of the main 
things I like about the IEEE decision tree is that it starts by asking whether traditional database 
technology meets your needs. This question really will filter the requirements remarkably easily. 
One of the challenges that you may also run into is that the blockchain industry is trying to make 
it seem that blockchains are the solution to every problem by using, a “hammer in search of a nail 
where every problem is made into a nail.” Reality is that if the customer does prefer or requires, 
for example, high transactions processing (over 1000 TPS), then you just ruled out a blockchain. 
On the other hand, if privacy, security, and compliance are the main concerns, then you may very 
well have a potential blockchain application use case.

The decision tree provides insight into questions that should be asked before deciding on 
whether blockchain is a good fit and then if a permissioned blockchain or a permissionless 
blockchain would be the right outcome.

 ◆ The first decision to make is to come to the realization that if a traditional database would 
work, then a need for a blockchain would likely not be there. If a traditional database is 
not going to work, then you can proceed.

 ◆ The second decision to make is to determine whether there will be multiple parties 
involved. If so, then proceed to the third decision. Generally, blockchains that are 
consortium- based blockchains are the best use cases.

 ◆ The third decision to make is around trust and whether a third party could be used.

 ◆ The fourth decision to make involves security and how you can trust distributed 
decisions.

 ◆ The fifth and final decision would be focused on whether you need privacy for your 
transactions. If you do, then you proceed to a permissioned blockchain, and if you do not, 
you would proceed possibly with a permissionless blockchain.

Chapter 3, “Architecting Your Enterprise Blockchain,” covers this step-by-step process in 
more detail. For the full context of the IEEE decision tree for adopting blockchain technology, see 
Morgen E. Peck’s article at https://spectrum.ieee.org/computing/networks/
do-  you-  need-  a-  blockchain.

Indicators of a Successful Blockchain Use Case
By understanding your blockchain indicators, you can determine how to establish a use case. 
Customers usually appreciate use cases from industries and verticals similar to their industry, 
even from competitors. The easiest way to establish and justify a use case is of course to have a 
comparable use case that would be from an industry partner or a competitor.

When you are qualifying a blockchain customer use case, here are some indicators that you’re 
likely to use in a potential valid use case with blockchain technologies:

 ◆ The customer has a KYC compliance requirement.

 ◆ The customer requires a distributed ledger that can maintain immutable records.



it-BasEd salEs cyclEs | 157

 ◆ The customer does not require SQL database performance, especially around transactions 
per second.

 ◆ The customer has requirements to implement cross-border payments that do not rely on a 
central authority.

 ◆ The customer has contracting requirements that could result in financial disputes such as 
chargebacks or term disputes that may result in legal concerns.

 ◆ The customer understands what legal prose is and intends to incorporate these require-
ments into a smart contract.

 ◆ The customer needs to establish a “farm-to-table” application that provides visibility to 
their customer base.

 ◆ The customer is considering removing intermediaries to reduce costs from their transac-
tion processing business unit.

There are certainly more use cases that can identify a successful blockchain use case. You may 
want to review the blockchain vendor websites for additional use cases. I cover several more 
detailed use cases with potential indicators in Chapter 8, “Enterprise Blockchain Use Cases.”

Highlighting Benefits of Blockchains
The benefits of the value creation of the blockchain technology should end in what outcome? For 
most organizations seeking blockchain benefits, every potential use case will have a different result.

Essentially, a distributed ledger for a logistics company may keep track of shipments coming 
in overseas and manage provenance for the company’s compliance requirements around U.S. 
Customs. Performance and cost management may not be the main benefits since the application 
is more concerned about tracking and recording U.S. Customs compliance.

The following list identifies the common benefits an enterprise can realize using blockchain 
technology:

 ◆ CAPEX and OPEX reductions (cost management)

 ◆ Permissioned access (security)

 ◆ Increased privacy (channeling)

 ◆ Efficiency by reducing intermediaries (fewer accountants, attorneys, custom agents, 
and lenders)

 ◆ Risk reduction (less human error)

 ◆ Data integrity (immutability)

 ◆ Provenance (historical event logging)

 ◆ Transparency (trust for consumers)

Blockchains can provide some great benefits related to security. Also, blockchains are specifi-
cally suited to data platforms where there is a need for security and redundancy.

Smart Contracts and Value Creation
When correctly implemented, smart contracts provide significant value to some organizations. 
As a reminder, smart contracts are computer program codes capable of managing, executing, and 



158 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

enforcing the performance of an agreement using blockchain technologies. The entire smart 
contract process should be fully automated and can also act as a complement, or substitute, for 
legal contracts in some scenarios. Corda for example provides immense value in this area.

Blockchain technology makes use of two distinct proprietary characteristics with the deploy-
ment of smart contracts: the use of validation rules and their enforcement of these rules in smart 
contracts. Validation rules define the conditions in which the records and blocks will be included in 
the blockchain, and the enforcement of validation rules work with an algorithm or protocol that 
enforces rules that have been entrusted by all parties with contributing data to the blockchain.

Smart contracts can provide that missing autonomy or trust that the organization did not 
enable before smart contracts. Smart contracts can also provide legal prose on some platforms 
such as R3 Corda where an attachment is used to clearly define the terms. The terms of the smart 
contract are recorded and are immutable once deployed on the blockchain.

Following are some of the more common reasons to use smart contracts for value creation. 
Not every use case for blockchains and smart contracts will experience value in the same way.

 ◆ Autonomy

 ◆ Trust

 ◆ Backup

 ◆ Safety

 ◆ Speed

 ◆ Savings

 ◆ Accuracy

As a sales engineer, you should ensure that you have a solid understanding of the potential 
value of smart contracts that an enterprise can benefit from.

Table 5.2 shows a comparison of traditional contracts versus smart contracts. Smart contracts 
are much more efficient for redundant tasks and can provide significant cost savings.

When discussing smart contracts with a customer, you should understand how the customer 
handles, procurement, contracting, or transactions within the organization. This will provide 
insight in how to address the potential benefits and also perhaps begin solid discussions on how 
they provide value. For example, I want to understand the customer’s application. Let’s say it’s a 

Table 5.2: traditional contracts vs. smart contracts

Traditional Contracts Smart Contracts

1–3 days Minutes

Escrow necessary Escrow may not be necessary

Expensive Fraction of the cost

physical presence Virtual presence

attorneys required attorneys may not be required



it-BasEd salEs cyclEs | 159

U.S.-based company that imports tons of products from overseas. I first want to understand how 
the customer’s current legacy solution works and understand the pain points, identify inefficien-
cies and potential savings, and then draw a potential high-level workflow that utilizes a smart 
contract blockchain platform.

REFERENCE chapter 6, “Enterprise Blockchain Economics,” discusses smart contracts from a busi-
ness perspective in much more detail.

Challenges to Blockchain Adoption
As a sales-focused engineer, it’s important to appreciate why blockchain is not the Holy Grail for 
solving every business and technical problem. Challenges to blockchain adoption can be great 
and for that matter numerous in some enterprise organizations. Furthermore, some industries 
and verticals are traditionally conservative in their approach to adopting new technology.

The following are some common challenges that I frequently deal with around blockchains 
and distributed ledgers:

 ◆ Industry technology adoption is slow with limited use cases that do not provide a valid 
TCO or ROI.

 ◆ The organization’s technology adoption is slow or may be due to some politically related 
concerns such as job security.

 ◆ Regulatory concerns may not have been clearly identified as the proper use case, or the 
regulatory body may not identify what blockchain solutions are “compliant.”

 ◆ The migration of services has not been clearly defined and therefore could limit adoption. 
For example, the process of migrating a legacy application to a blockchain service does not 
have a defined migration path.

 ◆ The hiring environment may be challenging due to the limited skill sets available in 
Ethereum or in a specific geographic location.

When it comes to blockchain adoption, you must realize that at a high level it might appear 
easy to justify a blockchain. However, blockchains are new compared to other technologies, and 
the maturity of the solutions is still not comparable to a “centralized” solution such as SQL, an 
established database SQL.

Sales Engineering Success
As an organization that may be considering expertise in the blockchain solutions architecture, there 
are some basic recommended job requirements to be considered during the hiring process.

Sales Engineering Job Requirements/Responsibilities for 
Blockchain Success
The following are some of the common job requirements for a successful blockchain sales engineer:

 ◆ Marketing responsibilities, such as conferences, trade shows, and booth duty

 ◆ Developing and presenting technical presentations that will translate the value of the 
proposed enterprise blockchain services to your prospects



160 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

 ◆ Translating the enterprise business requirements into technical requirements that will 
realize the business requirements

 ◆ Providing cost estimates based on technical procurement requirements for RFPs

 ◆ Supporting solutions demos and POCs including setting up demos and POCs

 ◆ Performing competitive analysis around major enterprise blockchain platforms and 
providing recommendations for client success

 ◆ Creating content such as solutions whitepapers, technical presentations, technical design 
diagrams, blog posts, and articles

The following are some of the common job experiences that a solid sales engineer 
should have:

 ◆ Experience selling IT infrastructure, software, and hardware and professional services

 ◆ Significant hands-on IT networking experience with TCP/IP protocols around integration

 ◆ Maintaining a solid understanding of computer programming development languages, 
software development kits (SDKs), and application programming interfaces (APIs)

 ◆ Experience with common blockchain development languages such as Python, Go  
(Golang), Node.js, JavaScript, C++, Rust, and Solidity

Sales Engineering Best Practices for Blockchain Success
As a customer-facing sales/solution engineer, you will spend most of your time working with a 
sales team made up of a sales executive, a sales manager, and perhaps a territory manager.

The following recommended best practices are focused on technical solutions selling:

 ◆ Become a trusted advisor by establishing credibility with the customer base of your 
organization. Knowing your customer’s business requirements as well as their business 
challenges can make all the difference in your success as a sales engineer.

 ◆ Ask the right questions to comprehend your customer’s business requirements and then 
take those requirements and translate them into a technical solution that meets or exceeds 
the customer’s requests.

 ◆ Clearly identify with confidence the use cases that bring value to your enterprise cus-
tomer base.

 ◆ Understand the blockchain technology enough to discuss the appropriate blockchain 
solution and provide value during demos and proof of concepts.

 ◆ Identify the stakeholders and appreciate that there are different types of people. They may 
come to decisions in different ways. Do not attempt to be pushy or overly objective. 
Decisions are made sometimes not based on merit but on political issues in the 
organization.

 ◆ Listen to the customer’s point of view and address it appropriately.

 ◆ Know your customer’s procurement process enough to ensure you’re providing the most 
efficient solution with the proper responses the customer requires. If you are responding 
to an RFP, then read all the data points before making a response.



it-BasEd salEs cyclEs | 161

 ◆ Engage talented application developers who understand software architecture and can 
provide insight for the customer around specific blockchain programming languages such 
as Python, Go, JavaScript, and so on.

 ◆ Perhaps the most overlooked trait is to just be likeable as well as approachable. Being a 
person who can establish a relationship on a personal level can sometimes be much more 
valuable to everyone involved. Being a nerd is great around programmers, but discussing 
other things of interest to the customer such as golf, military service, or their alma mater 
can enhance likeability and be a competitive edge for you. Know your customer and show 
them you care about their organization.

Blockchain Competency Readiness
When it comes to working with any IT-related platforms or solutions, it’s important to under-
stand your competencies. Basically, what are your company’s areas of expertise? What does your 
company do well, and what could be improved upon?

Generally, if you’re an IT vendor, reseller, or VAR, you may have deep expertise in IT net-
working and data storage. However, when it comes to application development, your company 
might not be able to talk about Python programming in an intelligent manner.

That’s where you need to do one of the following:

 ◆ Obtain talent internally (insourcing)

 ◆ Obtain talent externally through a partner or through direct hire (outsourcing)

 ◆ Walk away from the opportunity for the appropriate reason

Your sales leadership needs to evaluate a number of blockchain competencies. The first phase 
is blockchain training. It is always the starting point to understand the technology before 
proceeding to design, implement, develop, or even support. In my experience, I see application 
development as being the weakest phase for most companies. Figure 5.10 provides a workflow of 
activities that solutions based organization should perform to enhance blockchain readiness.

Blockchain Training As a sales-driven organization, the first thing your organization must 
invest in is training after buy-in from upper management. Identify areas including blockchain 
basics as well as more advanced areas such as smart contracts, legal prose, performance, and 
security. Some organizations take the step to educate everyone in the company, while others 
educate only a few IT professionals to be “enabled.”

Opportunity Discovery It’s all about driving revenue from your customers and your 
prospective customers. Generally, most sales-driven organizations handle this phase quite 

Blockchain
Training

Opportunity
Discovery

Application
Development

Solutions
Design

Application
Support

Figure 5.10 
Blockchain competency 
readiness 



162 | CHAPTER 5 EntErprisE Blockchain salEs and solutions EnginEEring

well. You can always count on good account executives to drive at least initial contacts. This 
phase could also take place at your trade shows and conventions. A confident sales engineer 
at a booth can make all the difference in engaging technically with attendees. It’s all about 
identifying blockchain opportunities, and your experts must be enabled.

Solutions Design When it comes to designing a blockchain network, it’s all about the 
capabilities and meeting customer requirements. Generally, most organizations I have worked 
with can design a network quite efficiently. When it came to cloud computing or blockchain, it 
was clear that these vendors and integrators were lacking in expertise. In this phase, you must 
be able to create a blockchain network, design highly available systems, specify proper 
blockchain platforms, determine deployment approaches, and then ensure that these designs 
meet the customer’s expectations.

Application Development This is where the buck stops! Most vendors and VARs perform 
the preceding phases well. When application development comes into play, this requires more 
than the sales team. Your sales organization really needs to have application development 
expertise at the ready to be successful in this area. It’s one thing to take a SQL database and 
upgrade the application hardware, but it’s another thing to move from SQL to a blockchain 
platform. Integration, development, performance, and security requirements all need to be 
addressed. Smart contracts and distributed applications need to be discussed.
Application Support After the integration and deployment, the blockchain application and 

the customer relationship need to be supported and maintained. Generally, most of these 
responsibilities are turned over to the customer. However, your developers and engineers may 
very well need to be engaged when challenges arise, especially during a POC. For example, with 
R3 Corda there are two options to deploying Corda. The options are the open source version and 
the enterprise version. Generally, during a POC you’re supporting the customer and not the 
vendor, which is Corda. When the customer moves to Corda Enterprise, the support, updates, 
and customer management are handled directly by Corda.

Summary
This chapter covered the solutions sales cycles of blockchain engagements and how VARs, 
vendors, and integrators can participate in the blockchain sales cycle. Selling blockchain solu-
tions requires a significant interaction with the development group. There are numerous roles 
around blockchain specialization, such as blockchain architects, blockchain marketers, block-
chain developers, and sales engineers, that focus on blockchains.

Enterprise blockchains will have both functional and nonfunctional requirements. It is 
important that you understand these requirements when scoping a blockchain engagement.

Blockchains just like other IT solutions have specific tasks during the sales process that you 
will need to perform or participate in such as requests for proposals (RFPs), demos, and proof of 
concepts (POCs). Blockchain technology has specific benefits, such as providing transparency, 
provenance, and immutability, but also specific challenges to its adoption. Discussions with 
prospective customers and clients will be focused on technical requirements for IT networking, 
blockchain, and computer programming. Becoming a trusted advisor by establishing credibility 
with the customer base revolves around knowing your customer’s business requirements as well 
as their business challenges—which can make all the difference in your success. Lastly, I dis-
cussed specific blockchain core competencies such as training, solutions design, application 
development, and best practices.



Chapter 6

Blockchains and distributed ledgers provide significant opportunities in the areas of cost control, 
cost reduction, and cost avoidance. In this chapter, I will discuss how blockchains and distrib-
uted ledgers can facilitate impressive total cost of ownership (TCO) scenarios and clearly 
improve return on investment (ROI) for finance-technical (fintech) use cases.

If you’re an IT vendor, integrator, or VAR, you need to understand the cost models so you can 
provide value to your customer base. When you are participating in discussions about block-
chains, it’s imperative to be able to compare legacy systems costing models to blockchain models.

The goal of this chapter is to explain how to justify implementations of blockchain services 
and hardware from a financial perspective and explain enterprise concerns related to costing.

Introduction to Enterprise Blockchain Economics
When you consider the economics of a blockchain solution, it is important to realize there are 
myriad economic decisions that an organization may consider, and those decisions can affect the 
outcome of a customer meeting significantly. From my experience, companies that are conserva-
tive in the risks that they take tend to view blockchain solutions as a gamble. But if you look at 
how that company would address disaster recovery, for example, where backups and DR testing 
are on a schedule with little disruptions, you can apply the same decision-making process to 
blockchain technologies. In other words, that same company will look at the IT-centric numbers 
around ROI, TCO, and other indicators to determine the likelihood of success of implementing a 
technology. It’s the same process when implementing a blockchain solution.

Enterprise Ecommerce Business Models
Enterprise business models are important to understand when considering blockchain architec-
tures. The generally accepted models for ecommerce are as follows:

 ◆ Business to business (B2B) is ecommerce between two or more businesses.

 ◆ Business to consumer (B2C) is ecommerce between a business and the business’s 
consumers.

 ◆ Consumer to consumer (C2C) is ecommerce between consumers.

 ◆ Government to business (G2B) is ecommerce between government and business.

 ◆ Government to consumer (G2C) is ecommerce between government and its citizens.

Enterprise Blockchain Economics

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



164 | CHAPTER 6 EntErprisE Blockchain Economics

As a blockchain vendor, integrator, or VAR, it is important that you understand how these 
models can affect an enterprise’s revenue stream. For the purposes of this book, I will be focusing 
on how an enterprise can utilize blockchain technologies such as payment gateways, for exam-
ple. I won’t be covering how B2B works or other business topics that are out of scope for 
this book.

NOTE Blockchains and distributed ledgers are providing new business models, trust models, and cost 
efficiency models. Blockchains are also solving it “pain points” as well around providing significant 
roi and tco.

Value Creation
Blockchains can add value in numerous ways such as transforming company operations, trans-
forming the business model, and presenting new opportunities such as using a blockchain for 
shared cost efficiency. Of course, value from blockchain technologies will be defined differently 
between different companies, and the results will vary. Blockchain technologies can also open up 
new markets, for example, with the use of cryptocurrency. It can also reduce some markets or at 
least reduce opportunities for traditional payment services such as PayPal, Western Union, or 
global banking systems. Removing these intermediaries creates opportunities for blockchain 
companies but also removes opportunities from traditional organizations. The world is  
constantly changing, and history is riddled with important companies that are totally irrelevant  
today. Companies must constantly innovate and create value or become extinct like Polaroid or 
Blockbuster, for example.

NOTE “We’re changing the world one blockchain at a time, and if we use this technology properly, 
we’re bound to make the world a better place for everyone.” —George levy, csBcp and cBp

Not only can blockchains provide organizations with new platforms to trade and perform 
payment services on, but blockchains can also connect to legacy payment gateways. Stablecoins 
are also an increasing popular solution to consider. Adopting a stablecoin makes sense when the 
model is business to consumer. (Stablecoins are discussed in more detail in the “Stablecoins”  
section.)

Blockchain Payment Gateways
Enterprises that are transacting between businesses or their consumer base may want to consider 
deploying a blockchain-based platform application for several reasons. First, connecting to a 
payment processor provides a different means of transacting and making payments, which may 
very well create new sources of liquidity for the enterprise as well as its business partners. 
Second, utilizing a blockchain payment gateway could enable the enterprise to lower the cost per 
transaction (TPC) for ecommerce applications by reducing integration costs and intermediaries, 
essentially reducing overhead and providing greater efficiency. Third, deploying a blockchain- 
based payment gateway may reduce the enterprise risks when deploying a blockchain 
application.

Examples of blockchain-based payment processors include the following:

 ◆ Coinbase

 ◆ BitPesa

 ◆ Aliant



introduction to EntErprisE Blockchain Economics | 165

 ◆ MenaPay

 ◆ Go URL

The integration between these payment processors and your enterprise could be accom-
plished simply with a payment gateway API. These APIs are provided by the payment gateway 
provider. Some APIs support different features and functions as well. The real benefits are a 
faster TPS and low cost, typically around 1.5 percent, which is somewhat lower than a credit or 
debit transaction and is significant for the merchants using a payment gateway.

Stablecoins
One of the newer ways to provide both economic value and utility value such as price stability is 
through the implementation of a stablecoin. A stablecoin is a cryptocurrency that is collateralized 
to the value of an underlying asset. An underlying asset could be another cryptocurrency, a fiat 
currency such as the U.S. dollar, or a metal such as gold or silver.

Stablecoins solve the challenge of the volatility that a cryptocurrency traditionally has. This 
instability reduces the potential adoption of cryptocurrencies for everyday payment purposes. A 
stablecoin mitigates the up and down prices of the cryptocurrency that it may be pegged to so 
that the users can utilize the services.

A more exciting stablecoin project that was announced at the time of writing is the Facebook 
Libra project. Facebook has more than 2.38 billion monthly active users, and Libra could present 
some significant opportunities for the “unbanked,” meaning people who may not have access to 
a bank account.

Libra is built on an open source blockchain called the Libra Blockchain featuring its own 
proof-of-stake protocol. Libra’s mission is to reinvent money and transform the global economy 
so people everywhere can live better lives.

Libra is backed by a reserve of various assets designed to provide intrinsic value to Facebook 
users. Libra is governed by the independent Libra Association tasked with evolving the ecosys-
tem. The founding members include a varied group of organizations such as Mastercard, PayPal, 
Stripe, Visa, eBay, Facebook, Lyft, Uber, Spotify, Andreessen Horowitz, Vodafone Group, Kiva, 
Mercy Corps, and Women’s World Banking. The member list is at https://libra.org/en-US/
partners/.

There are three types of stablecoins at the time of writing, and some of these do have some 
enterprise adoption for customer-based interaction and ecommerce. The three types of stable-
coins are asset-backed off-chain, asset-backed on-chain, and algorithmic. Table 6.1 compares the 
three types of stablecoins and their funding models.

Table 6.1: stablecoin comparative overview

Type Funding Model Examples

asset-backed  
off-chain

Fiat or commodity backed tether, 
Gemini, usd coin

asset-backed  
on-chain

crypto backed steem, maker, huabi

algorithmic algorithms and smart contracts; known as  
seigniorage-style stablecoin

terra, karbo, 
ampleforth



166 | CHAPTER 6 EntErprisE Blockchain Economics

Table 6.1 references the different types of stablecoins that are common for blockchain-based 
services and applications. A stablecoin is usually anchored or “tethered” to real-world currencies 
on a one-to-one basis and backed by reserves. Tether is an active project and is a widely held 
stablecoin that allows you to store, send, and receive digital tokens. These tokens are pegged or 
“stabilized” to currencies such as dollars, euros, and yen on a person-to-person level. Stablecoins 
are commonly used on crypto-based commodity exchanges, for example, to trade commodities.

The most common stablecoins are listed on the Stablecoin index at https://stable-
coinindex.com/.

Stablecoins provide significant value when a company uses them to interface directly with 
consumers, other businesses, and even governments to provide stability for the platform.

Blockchain Funding and Costs
When it comes to funding a blockchain project, you must be aware that the project may be 
funded by one method initially and then funded by another after the deployment is completed. 
For example, if a company procures $30,000 in servers and network equipment to deploy 
Hyperledger Fabric on-premises, the support and maintenance after deployment will probably 
be funded by another mechanism such as departmental funds.

When an IT project is being proposed, an effective executive sponsor can demonstrate 
commitment by publicly discussing the reasons why the program is important to the organiza-
tion. Knowing your stakeholders and then working with the stakeholders will provide immense 
value to blockchain adoption.

Understanding how your customer’s blockchain project will be funded is of course important 
to understand. This section of the chapter will provide you with a solid understanding of the 
various project funding concerns.

CAPEX and OPEX
Companies fund their infrastructure projects and day-to-day operations via different funding 
methods. These methods will have some impact on the profitability of the company because 
there are significant tax laws not only in the United States but also in other countries. The costing 
models most commonly used are the capital expenditure (CAPEX) and operational expense 
(OPEX) models.

 ◆ CAPEX is the large financial investment a company makes today to invest in the future. 
CAPEX funding is a procurement exercise where approvals are required from executives 
and from the enterprise’s procurement departments. This type of funding is planned on 
an annual basis, and the funding can be time-consuming to get approved and also 
to receive.

 ◆ OPEX is the funding used for the smaller, “day-to-day” money a company spends. OPEX is 
usually disbursed to the business units on a calendar basis with no approvals or procure-
ment exercises required. (Monthly, quarterly, or annually are common calendar schedules.)

A significant difference between these two types of expense schemes is the way they are 
accounted for in an income statement and the tax benefits that may present to the company. 
CAPEX spending from an enterprise perspective is used to acquire assets such as a datacenter 



Blockchain FundinG and costs | 167

generator, which would have a useful life beyond the specific tax year it was purchased. From a 
tax perspective, these expenses normally won’t be fully deducted in the year they’re incurred 
(purchased). (They are capitalized, amortized, or depreciated over the asset’s lifetime, which in 
the United States could be 7 to 15 years.)

OPEX spending is used for operating expenses that can normally be fully deducted in the tax 
year the item was purchased, which can provide significant benefits for shareholders. Most 
companies prefer OPEX since they can write off these expenses in full and immediately because 
they are not over an amortized tax schedule.

Table 6.2 provides some examples of OPEX and CAPEX expenditures.

In a nutshell, any IT service can be deployed in an on-premises data center that is controlled 
by the enterprise or can be deployed in a colocation data center (colo). A colo is a shared data 
center facility in which an enterprise can rent or lease data center space for its IT equipment. 
These colocation contracts vary widely, but one differentiator is that you can actually access your 
equipment; however, in contrast to a cloud computing platform, you have no access to them 
physically. For example, with ATT, Equinix, and Digital Reality, you can visit and access your 
equipment, but with AWS, GCP, and Azure this would not be the case.

As a pre-sales engineer, I have been involved in perhaps thousands of hours of discussion 
around technology choices, and part of those discussions involved funding decisions. Whether to 
choose CAPEX or OPEX funding is a decision that enterprises take very seriously because of 
profit-and-loss concerns, tax ramifications, time to market, and perhaps the viability of 
the project.

From experience, I find that companies almost always choose the OPEX approach for funding. 
I have run into instances where the company will fund a $120,000 project that would normally be 
CAPEX via not one funding source but several OPEX sources by breaking purchases into smaller 
amounts. This is similar to going to the grocery store with $120 to buy groceries and breaking up 
the purchase into three transactions and then using three debit cards with small limits.

Table 6.2: capEX and opEX data center expense examples

CAPEX OPEX

computers and servers cloud subscriptions

data storage arrays Blockchain as a service (Baas)

networking equipment utilities

Building requirements network bandwidth

hVac requirements membership and fees

Vm/dB/os licensing contract labor and employee wages

internal crm suites rents and leases

Employee training and books



168 | CHAPTER 6 EntErprisE Blockchain Economics

Cost Considerations
Costs in most IT projects can be both predictable and unpredictable. An example of a predictable 
monthly services cost is the fee for reserving cloud computing virtual machines. Other examples 
are leases, support contracts, labor costs, software licensing, taxes, insurance, and so on.

An example of an unpredictable cost is the fee for bandwidth when it is difficult to determine 
ahead of time the number of queries against a database. Blockchains that are hosted on-site will 
of course have much more predictable costs, especially if the users as well as the blockchain 
nodes are local. If you have users who are utilizing a blockchain as a service (BaaS) in AWS, then 
you can expect certain costs to be unpredictable. Other examples include network bandwidth, 
transactions fees, utilities, and legal fees.

The following are examples of costs that can be incurred in typical enterprise blockchain 
deployments:

 ◆ Infrastructure (fixed or not)

 ◆ Data storage costs

 ◆ Data transfer costs

 ◆ Legal review

 ◆ Implementation costs

 ◆ Development costs

 ◆ Maintenance and support

 ◆ Compliance requirements

The costs will also depend on the type of industries that the blockchain is serving and the 
amount of risk that the customer is willing to take during implementation and even manage-
ment. For example, if you have a blockchain deployment that can use a predefined blockchain 
template in AWS, that would cut several costs significantly. However, by using a blockchain 
template from any vendor, you are essentially limiting your blockchain’s performance, virtual 
machine configurations, and blockchain versions and regions.

The most important point is to ensure your client understands that blockchains are a newer 
technology, and they are still evolving. This means an investment made yesterday could very 
well be wasted if not properly planned from a costing perspective today.

Infrastructure Costs
Infrastructure costs will be your data center costs whether your company owns it or is leasing. 
Data centers are quite expensive and require significant CAPEX and OPEX funding to maintain.

Costs for data center space are calculated based on square feet. Also, you may be considering 
a colocation data center (colo), where the cost is based on a “per rack” approach. You may want 
to consider density as well.

When it comes to data center costs, the following costs should be considered. Note that these 
data center requirements can fluctuate based on the enterprise’s business model. The costs and 
utility requirements also will vary significantly based on the tier level that your enterprise  
requires.



Blockchain FundinG and costs | 169

 ◆ Leases

 ◆ Utilities (power, cooling, UPS)

 ◆ Fire suppression

 ◆ Insurance

 ◆ Maintenance contracts

 ◆ Labor costs

 ◆ Hardware (servers, storage, network)

 ◆ Software licensing (OS, VMs, apps)

 ◆ Inspections and audits

 ◆ Networking

 ◆ Service providers (bandwidth)

 ◆ Solutions design

In general, the customers implementing a blockchain such as Hyperledger in their infrastruc-
ture are incurring significant costs. To be quite fair, it’s not exactly a one-to-one relationship when 
comparing a blockchain application to a traditional centralized database application. 
Hyperledger and Oracle Databases have significantly different cost structures and labor require-
ments, for example.

Customers that want to reduce CAPEX or just avoid CAPEX completely can use a cloud 
service such as AWS, Azure, or IBM BaaS. There are, of course, several other cloud providers that 
have some form of blockchain templates or services as well. The pros of using BaaS are that in 
most scenarios your organization will avoid any CAPEX expenditures and reduce its maintenance  
and support responsibilities. This will allow your organization to get the blockchain service out to 
market more quickly.

The cons of using BaaS are that you are limited to the configurations that the cloud provider 
has available, subjected to network latency, and in reality, you sometimes have no control over 
your node configurations you deploy.

Data Storage Costs
Data storage is a continual cost since the blockchain is a distributed ledger and that distributed 
ledger is continuously being “appended.” Another factor to consider based on the ledger 
structure being utilized is that the decentralization of blockchain storage can have various 
additional financial benefits to your enterprise. For example, you may save on bandwidth since 
files are distributed among nodes and downloaded from multiple nodes instead of from a 
single node.

Figure 6.1 references the costs of data storage when using a common blockchain cloud 
provider. The numbers are fictional, and you would need to evaluate each provider as well as the 
type of storage, region, and other features. For example, data storage can be priced per gigabyte, 
based on 100GB per month. Also, you should be aware of numerous factors, such as the cloud 
provider’s regions and zones. which could have different costs per gigabyte and numerous other 
costs such as ingress and egress of accessing the storage.



170 | CHAPTER 6 EntErprisE Blockchain Economics

Data Transfer Costs
One of the challenges when using any network service is to understand how network costs are 
handled. For example, when traversing your enterprise’s on-premises resources to a cloud 
provider such as Microsoft Azure, you will need to be aware of bandwidth costs.

Bandwidth costs are broken into two charging traffic mechanisms.

Ingress Ingress is traffic that is directed toward an internal resource from an external  
resource.

Egress Egress is all traffic that is directed toward an external network from an internal  
resource.

When you consider a blockchain service that is traversing multiple networks, you need to 
understand the cost of the potential applications. If you have nodes that are disbursed between 
two different data centers, whether or not they are cloud services, you’re going to need to 
estimate the costs for these applications.

Figure 6.2 shows the traffic flow for ingress and egress traffic from a company data center.

Historically, traffic charges are billed monthly based on a tiered structure, with higher rates 
for higher data transfers into and out of the cloud.

Blockchains are going to be traffic intensive—that is, the distributed ledger is constantly being 
appended to, and transaction logs are going to be written to. Some of the factors of blockchain 
services that could affect traffic charges include the following:

 ◆ Backups of ledger traffic an/or transaction logs

 ◆ Disaster recovery

Data Storage Costs
Cloud storage

(object storage)
is centralized.
Not ideal for
blockchain

usage.

IPFS is ideal for
blockchain.

Replication is
needed.

Cost example
with 1PB.

Cost per GB is
$100.00GB. 

Figure 6.1 
data storage costs

BaaS
Application

Ingress

Egress

Figure 6.2 
ingress and egress traffic 
flow from the cloud



Blockchain FundinG and costs | 171

 ◆ Snapshots of containers and/or virtual machines

 ◆ Monitoring of blockchain nodes and/or services

Figure 6.3 refers to ingress and egress charges and provides an example of Microsoft Azure 
and how redundancy as well as the regions could affect costing.

The configuration shown has two regions that are being utilized: North America and South 
America. The costs for cloud services in both regions vary; you also want to be cautious about 
replication and bandwidth charges. Plan your blockchain data services appropriately to avoid 
excessive costs. An area of waste that is typically part of a “cloud spend” problem is that there 
are virtual machines and storage objects that are not being utilized or are on the wrong tier of 
service. If your blockchain is running on a cloud provider, then use one of the cloud provider’s 
cloud spending analyzers or calculators to identify waste.

Managed object cloud storage allows you to expand your usage footprint to utilize as much 
data as your enterprise requires. Your enterprise can store oversized files up to 5 TB on both AWS 
and Azure, for example. Storage is one area where costs can get out of control, so tread conserva-
tively in your planning and implementation. I have done many cloud and virtual machine 
assessments and have seen companies waste more than 40 percent of their cloud spend on just 
redundant data.

Legal Costs
When considering blockchain transactions that may be “traversing” legal jurisdictions such as 
states, provinces, and countries, it is important to consider the legal concerns. When you are 
making transactions across borders between the United States and the European Union, for 
example, the legal team needs to be involved to review any potential liability risks as well as 
compliance requirements.

Your legal or corporate team will likely want to validate concerns about how a ledger transac-
tion is handled in a smart contract on R3 Corda from a “legal prose” perspective. Legal prose is a 
term used in R3 Corda to reflect a specific record of an explicit link between human-language 
legal prose documents and smart contract code. These “documents” may be relied upon in the 
case of legal disputes.

Ingress No Cost up to 5GB of Bandwidth
Egress Cost Per GB Tiered (5GB-10TB/$.087 GB)

Redundancy/Pricing Per Region/Storage Tiers

Costs that are additional in MS Azure Object Storage

BaaS
Application

Ingress

Egress

Figure 6.3 
microsoft azure data 
storage costing example



172 | CHAPTER 6 EntErprisE Blockchain Economics

Some common legal concerns that can create additional costs have to do with legal prose, lack 
of legal precedence, smart contract compliance, property rights, and chain of custody tracking 
and compliance. In Chapter 9, “Blockchain Governance, Risk, Compliance (GRC), Privacy, and 
Legal Concerns,” I cover the legal concerns in much more detail. For the purposes of this chapter, 
be aware that legal costs can be a factor that may need to be considered when discussing 
blockchain funding.

Implementation Costs
Perhaps one of the more challenging aspects of blockchains for some enterprises will be the 
moving parts of blockchain implementations. Different stakeholders and even the vendors don’t 
fully understand the processes. One of the areas I tend to focus on is that blockchains and 
distributed ledgers are a development exercise. Every developer has their own programming 
style, approach, understanding, and to be honest, incentive to completing the requirements 
and tasks.

I have found that providing your blockchain developers with an incentive to getting the client 
applications and smart contracts written in a timely manner that follows your application 
requirements can make or break your project. Costing with implementations will likely never be 
within 20 percent of the estimates.

Some common costs that can be planned for are the costs for acquiring the skillsets required to 
develop the blockchain application, resources to be procured, and contractors who will aid in the 
deployment. Training is also a cost that should be considered for any labor as well for a proof of 
concept. This is often overlooked and under-budgeted.

Development Costs
Development costs can vary widely when considering TCO and ROI calculations. I prefer to err 
on the side of conservative estimates. The last thing you want to do is underestimate costs and 
place your estimates in jeopardy.

The main concern I run into is related to enterprise integrations. For example, how does the 
organization integrate efficiently its existing client applications into a platform such as 
Hyperledger Fabric? Another concern is hiring the right blockchain programming talent, which 
can be challenging. For example, the pool of developers who understand and code JavaScript 
and Python is somewhat larger than developers who can develop in Golang or Solidity.

Figure 6.4 highlights common development costs.
Blockchain expertise is in high demand worldwide. According to CNBC Blockchain 

(https://www.cnbc.com/2018/10/21/how- much- do- blockchain- engineers- make.html), 
engineers are making, on average, between $150,000 and $175,000 in annual salaries. Blockchain 
development hotbeds such as New York City, London, Singapore, Silicon Valley, Switzerland, 
and Toronto are seeing blockchain developers command more than $200,000 a year.

When searching for blockchain expertise, it is critical to understand that the job seeker has the 
upper hand, at least at the time of writing. Therefore, you should be conscious that even though 
a blockchain developer is a developer, their skills are clearly in demand, and your hiring 
behavior should reflect this if your enterprise is concerned with filling the vacancy.



EntErprisE Blockchain cost modEls | 173

Some of the skills that a blockchain developer needs are related to enterprise skills such as 
networking, security, Agile, and DevOps. The different blockchains use different programming 
languages. For example, Ethereum is focused on Solidity, while Hyperledger focuses on Golang. 
Other common languages are Node.js, Java, Python, C++, and .NET languages. Having experi-
ence with open source is also recommended.

Obtaining the right skillsets will be challenging based on the requirements, location, and other 
factors such as salary and experience requirements.

REFERENCE For more detailed information about blockchain skillsets, demand, and development 
requirements, please refer to chapter 12.

Enterprise Blockchain Cost Models
Blockchains are transforming the way entire industries work, especially in the fintech and 
logistics industries, with new business models and potentially new revenue opportunities. When 
it comes to blockchains, it is important to understand that most of the cost savings that will be 
realized will be through implementing “business logic” into smart contracts.

Off-Chain and
Channel

Requirements

Blockchain
Development Costs

Complexity of
Blockchains

Hiring Specialized
vs Non-Specialized

Development
Languages. (Solidity

vs Python)

Increasing
Regulations and

Compliance
Requirements

Enterprise
Integration
Challenges

Increase
Collaborations
(Consortiums)

Figure 6.4 
Blockchain  
development costs



174 | CHAPTER 6 EntErprisE Blockchain Economics

Business logic delegates your prior “intermediary” tasks to smart contracts or chaincode that 
will be triggered by events originating from other consortium members. For example, the 
Ethereum blockchain can resemble a cloud service, where responsibility for processing transac-
tions is shared among distributed nodes.

However, if you must have privacy, security, and specific membership, you can’t use a shared 
permissionless blockchain like Ethereum and must either absorb the full cost of the blockchain or 
share those costs with other industry members.

The following sections provide insight into a cost’s effectiveness on the blockchain solution.

Return on Investment
ROI analysis is used to compare investment scenarios. Let’s look at two high-level scenarios.

 ◆ An enterprise customer is determining whether to refresh a SAN storage array for three, 
five, or seven years. An ROI analysis will be requested to help determine which option is 
better from a “financial perspective.” The costs for this hardware are fixed (hardware, 
software, support, power, and so on).

 ◆ An enterprise customer is determining whether to implement a Hyperledger Fabric 
blockchain for three, five, or seven years. An ROI analysis will be requested to help 
determine which option is better from a “financial perspective.”

The main difference here from an exercise standpoint is that the hardware has fixed costs that 
are easy to determine, and a blockchain has both fixed costs and some not so fixed costs that can 
be undetermined such as development costs.

Figure 6.5 shows some common reasons to perform an ROI.

Monitor
Compliance
Performance

ROI
Effectiveness

Validate
Technology
Adoption

Validate
Return on IT

Projects

Evaluate
Team

Performance

Monitor
Returns on IT

Projects

Figure 6.5 
return on investment



EntErprisE Blockchain cost modEls | 175

Every organization has different expectations and approaches to how to monitor and manage 
the effectiveness of an IT project. When evaluating a blockchain opportunity, you want to start 
establishing what ROI formula to utilize. Essentially, the following is the most direct approach to 
an ROI number or basic formula for ROI:

 ROI = Net Profit / Total Investment * 100 

Essentially, net profit is the “return,” and total investment is a collection of costs that are 
incurred from hardware, software, cloud services, consulting, and development.

The basic ROI calculation is also known as the rate of return (ROR) or the rate of profit (ROP). 
This ROI return is also known as income gained or income lost on any investment or the profit 
and loss results. In the accounting world, there are many approaches to calculating the same 
outcome, especially when it comes to tax assessments. The cost of investment is also known as a 
capital investment. Specifically, in IT, we would use the CAPEX and OPEX approach to fund IT 
projects even if they are blockchains.

Figure 6.6 highlights the most common ROI formulas used in IT-focused projects. The number 
that is arrived at for an ROI will be vastly different based on what inputs you’re measuring. For 
example, if your customer measures net profit or net income differently than another company, 
then this will skew the results. I have been in large Fortune 100 companies where two different 
IT-focused departments determined ROI very differently. As a solution engineer, you need to 
work with the customer to ensure you use the most favorable metrics for the customer’s 
use cases.

When calculating ROI, I like to use a chart or spreadsheet showing potential benefits present 
to the customer. These benefits fall into two categories.

Tangible Benefits Tangible benefits are those that can be seen, measured easily, or docu-
mented easily. These are known as hard benefits. An example is replacing a legacy email system 

ROI Formulas
ROI = Net
Gain/Cost

ROI = Net Profit/
Total Investment

* 100

ROI = Net
Income/Cost of

Investment

ROI = Investment
Gain/Investment

Base

Figure 6.6 
roi costs and formulas



176 | CHAPTER 6 EntErprisE Blockchain Economics

with a cloud service. It’s clear that the legacy systems have been decommissioned and the 
costs recovered.

Intangible Benefits Intangible benefits are those that cannot be seen, measured easily, or 
documented easily. These are known as soft benefits. An example of an intangible benefit 
would be replacing a call center system and experiencing higher customer satisfaction and 
potential in increased brand awareness.

Total Cost of Ownership
Total cost of ownership is widely used to estimate costs for a blockchain application. TCO is 
essentially gathering up all the costs, whether direct or indirect, to estimate a project. Figure 6.7 
highlights the high-level cost tiers to consider when you’re estimating a blockchain application 
deployment.

Some more specific blockchain costs of implementation are usually considered “startup costs” 
such as training for personnel, infrastructure hardware and software, licensing, and consulting 
services. Operational costs are incurred after startup and when the application is in production. 
These costs include management and monitoring services, bandwidth costs, and transaction fees. 
Retirement costs are incurred to “turn off” a service, essentially decommissioning the application.  

Retirement Costs

Startup Costs

Operational Costs

TCO (Total Cost of Ownership) is a comprehensive assessment of information
technology (IT) investments across Enterprise boundaries over a specified timeframe.

May include the following costs:

Figure 6.7 
total cost of ownership



potEntial cost EFFiciEnciEs | 177

This could mean archiving data for compliance purposes, removing and disposing of server racks, 
or incurring tax consequences.

Figure 6.8 covers common TCO costs an enterprise would incur when deploying an applica-
tion service in a data center.

ROI vs. TCO
The major differences between the two financial analysis models (ROI and TCO) are that the ROI 
model is a cash flow model and not just a costing model, while TCO is the total cost of acquiring 
and operating an asset over a period. Also, you should be aware that the costs as well as any 
savings the investment has produced need to be quantified (itemized).

Potential Cost Efficiencies
Let’s consider some of the typical cost efficiencies that blockchains can introduce into the 
organization. The cost efficiencies will focus on removing intermediaries that process manual 
transactions.

Reducing Burdened Labor Costs
Technology innovations can provide cost savings that are based on transactions, fees, hardware, 
or software purchases or even governance and compliance. Technologies such as cloud comput-
ing, automated intelligence, and machine learning are providing substantial costs in labor, both 
for employees and for contractor hiring requirements.

For example, cloud computing is known for creating substantial reductions in overhead TCO 
for hardware, software, utilities, and labor costs. Not only has cloud computing been used to 
implement aggressive cost cutting in IT around reduction in force (RIF) for traditional legacy IT 

TCO CostsPersonnel

(Employees and
Consultants)

Environmental
costs such as

utilities

Data Center
Costs

Hardware, Software,
and Support

Figure 6.8 
tco costs



178 | CHAPTER 6 EntErprisE Blockchain Economics

professionals, it also provides burdened salary cost efficiencies and requires more skilled but also 
lower-paid IT professionals.

Blockchain technology certainly is no different when you consider the number of potential 
full-time employees that could be reduced because of their roles as intermediaries. Blockchain 
technology will likely provide efficiencies from removing manual interactions or transactions 
that were traditional traditionally required. One example is Know Your Customer (KYC), which 
is considered to be a time-intensive, manual, and costly procedure that financial institutions are 
required to participate in.

If your averaged burdened overhead costs per employee (salary, taxes, and benefits) are an 
average of $150,000 per year and your company has 50 intermediaries validating, auditing, or 
somehow participating in transactions, then you could consider the legacy solutions a target for 
blockchain applications. This becomes somewhat more relative when there is a consortium, for 
example, that could realize the benefits as a collaborative effort.

Some common costs that go into the “burdened” salary are wages, payroll taxes, benefits such 
as insurance, computers, retirement costs, free snacks, and any human resource or 
recruiting costs.

Figure 6.9 shows the common costs that go into an employee’s salary. From a perspective of a 
large bank, if they have hundreds of employees, then finding a reason to not keep as many 
employees is always in the mind of the CEO.

Smart contracts were created to essentially perform “intermediary” (accountant, lawyer, 
customs reviewer, and so on) duties and provide efficiency based on computer logic. Of course, 
the potential discussions could revolve around reducing your organization’s institutional over-
head that typically performs important, manually intensive, costly, but idealistically “redundant 
and predictable” duties. The best use cases will provide significant cost efficiencies that will 
document clear savings such as reducing the employee head count.

Human
Resources

Burdened
Salary
Costs

Retirement Wages

Benefits Taxes

Figure 6.9 
Burdened salary costs



potEntial cost EFFiciEnciEs | 179

Using OPEX over CAPEX
When a company decides to move from CAPEX to an OPEX model for IT funding, it can realize 
substantial savings. For example, savings can be realized when migrating from the enterprise’s 
on-premises data centers to a cloud computing service such BaaS.

Operating expenditures in the United States can be fully deducted that tax year and thus 
provide the company with greater revenue realization, better earnings per share (EPS) ratios, and 
financial benefits for shareholders. Some examples are that all cloud computing–related spending,  
which is known as cloud spend, usually can be fully written off or deducted that year. Deducted 
means subtracted from the revenue when calculating the profit/loss for the enterprise. Please note 
that I am not a tax advisor or providing financial advice; this is a generalization of corporate 
behavior of IT costing in the United States.

Lower Transaction Costs
When a company is processing a transaction specifically for payments, the cost per transaction 
(CPT) can be drastically reduced via a blockchain application. For example, participants in a 
marketplace such eBay, Amazon, or Etsy act as intermediaries charging fees and therefore 
capitalizing on their ability to control transactions taking place within their marketplaces. Lower 
transaction costs can easily be attained with the right blockchain solution that introduces 
automated transaction management that is decentralized. Stablecoins, for example, could play a 
role in a marketplace to help facilitate trade and provide stability for the customer base. This in 
turn can provide lower costs per unit or transaction for the platform.

REFERENCE i will discuss more use cases that can lower transaction fees in chapter 8, “Enterprise 
Blockchain use cases.”

Costless Verification
Costless verification is a term that is referenced with blockchain technologies to describe the 
validation of a transaction after the transaction has occurred. The blockchain is a living ledger 
that is being updated constantly but is also historically an immutable provider of transaction 
histories. Costless verification can reduce the verification costs of transactions especially when 
compared to traditional legacy financial systems. Costless verification means that the recorded 
attributes that need to be verified securely on a blockchain can be referred to at any point on the 
distributed ledger at no cost to the subscribers.

One more factor to consider is that blockchain transactions are always available and are not 
centrally controlled. For example, if a company wants to validate the transactions of a shipment 
of avocados, it simply could “query” the blockchain ledger and confirm instantly any related 
information to the shipment. In a centralized database system, that was not always the case. 
Costless verification provides efficiencies, and you should be aware of this as a possible cost 
efficiency to discuss with your customer.

Intermediary Roles and Blockchain
The P2P trust economy that blockchains such as Bitcoin have enabled represents an impressive 
shift of power. Gone are the days you need to go to a bank to send money overseas, for example, 



180 | CHAPTER 6 EntErprisE Blockchain Economics

thus incurring substantial fees. Now you can send money via any number of cryptocurrency 
platforms and save money especially as a user.

Figure 6.10 shows a high-level transaction flow through the legacy network of Swift. Note that 
there is an intermediary such as a bank who collects a fee.

Perhaps with this new trust economy some enterprises may benefit from a lower cost per 
transaction by removing the requirements for an intermediary. The one sure thing with block-
chains is that every enterprise’s “mileage may vary” in the sense of cost savings and benefits that 
blockchains are able to bring to the table.

When it comes to blockchain cost efficiency, the greatest cost savings could come in the form 
of “intermediary” reduction or reassignment. Blockchains that are permissionless are open and 
transparent and allow access to transaction information in the smart contract. Because of this, 
smart contract automation problems can perhaps be solved more efficiently.

Figure 6.11 shows a blockchain-based solution transferring value. Note that there is no 
intermediary such as a bank.

Traditional Model - Frank wants to send funds to Sally but cannot do it directly.
He must use an “intermediary” such as a bank or transfer service.

Frank

Bank Fees

SallySwift 

Figure 6.10 
intermediary example

Blockchain Miners 

Bank is cut out 

Small TX fee paid to miners 

Blockchain Model - Frank wants to send funds to Sally and can use a P2P “cryptocurrency”
to bypass a bank or transfer service’s high fees and slow service.

Frank Sally

Figure 6.11 
Blockchain example



summary | 181

Blockchain technology enables data reconciliation between two independent parties. A 
database may very well be distributed and highly available. The blockchain ledger is distributed 
between any number of nodes, and any changes in the database can be managed by parties that 
are independent or not fully independent. The reality is that depending on the blockchain 
deployment and whether it’s permissioned or permissionless, the benefits may not be 
fully realized.

In financial institutions, it has been documented that the blockchain is providing efficiencies 
for intermediary-based role requirements. These requirements revolve around the number of 
intermediaries required but also the skill levels required. Blockchain is disrupting roles. 
Following are the common roles that are being affected:

 ◆ Accountants

 ◆ Attorneys

 ◆ Custom inspectors

 ◆ Fulfillment processors

 ◆ Settlement agents

Blockchains, like most IT-focused projects, have significant costs, and as a customer-facing 
engineer, it is important to understand these costs to ensure you set the correct expectations of 
the project.

Summary
This chapter covered the various cost models such as B2B and B2C and discussed the main 
ecommerce models that are common in the business world. When it comes to IT projects, some 
costs can be predictable, while some costs are not predictable. Companies are relying less on 
CAPEX funding and more on OPEX funding. OPEX is disbursed to the business units on a 
calendar approach with generally no approvals or procurement exercises required. There are 
numerous costs such as infrastructure (fixed or not), data storage costs, data transfer costs, legal 
review, implementation, development costs, and maintenance and support.

Selling blockchain solutions requires a significant interaction with the development group 
and various roles of an enterprise. Both TCO and ROI are important financial accounting 
calculations that need to be utilized in a blockchain assessment. When it comes to blockchain cost 
efficiency, the greatest cost savings could come in the form of intermediary reduction or reassign-
ment, which could lead to a lower cost per transaction.



Chapter 7

In this chapter, I discuss why blockchain as a service (BaaS) is a great way to help stand up your 
enterprise blockchain without all the heavy lifting of having to set up your IT infrastructure to 
accommodate a blockchain. BaaS provides the added benefit of reducing the capex requirements 
of standing up resources for your blockchain in your on-premises data center. Then I will walk 
you step-by-step through how to deploy Hyperledger on IBM and AWS.

BaaS takes full advantage of cloud computing by utilizing both the economic and technical 
merits of cloud computing to enable enterprises to deploy these services on cloud providers such 
as AWS, Microsoft Azure, and IBM Cloud.

I will discuss how blockchains and distributed ledgers can facilitate an impressive total cost of 
ownership (TCO) scenario and improve your return on investment (ROI) models for FinTech- 
focused use cases.

Deploying a blockchain is a relatively direct, cost-efficient, and manageable task that can be 
completed in less than a few hours. I will discuss why companies choose to use a cloud service 
and the main benefits of using a provider such as IBM for your blockchain deployment.

The first part of the chapter provides a concise guide of current BaaS platforms with the main 
benefits, features, and use cases they provide. I will also discuss how to use BaaS for proofs of 
concepts and demos especially for presales-focused readers.

In the second part of the chapter, I will walk you step-by-step through deploying a blockchain 
on the following services:

 ◆ Amazon Web Services (AWS)

 ◆ IBM Cloud

The main goal of this chapter is twofold. First, I’ll give you a financial perspective for how to 
justify implementations of blockchain services and hardware as well as present enterprise 
concerns around costs. Second, I’ll explain how to deploy a blockchain on the AWS and IBM 
Cloud services.

Blockchain as a Service Overview
The blockchain market is expanding at a brisk pace, and BaaS is no exception. The market 
leaders in cloud computing have been investing millions in this area as well. From a market 
perspective, I will focus on AWS, IBM Cloud, and Microsoft Azure, which at the time of writing 
are the most comprehensive solutions.

NOTE “The global BaaS market will reach USD 30.59 billion by 2024.” —Zion Market Research

Deploying Your Blockchain on BaaS

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



184 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

Why Use a Blockchain as a Service?
Blockchain as a service is a cloud services offering that allows customers to leverage cloud-based 
solutions to build, host, and use their own blockchain apps, smart contracts, and functions on the 
blockchain. In BaaS, the cloud-based service provider manages all the necessary tasks and 
activities to keep the infrastructure agile and available.

The BaaS market is expected to grow significantly over the next five years. This growth is due 
to the market’s demand for increasing blockchain applications in the commerce sector. 
International business transactions are getting more secure, fast, and reliable alongside the BaaS 
model coming into the picture. Because the database is distributed and the trail of every transac-
tion is available, blockchain as a service is eliminating obstacles in international payment 
processes. Delay in verification and invoice processing increases the cost of business activities, 
which can be nullified or reduced by using blockchain technology. The technology provides a 
common chain of information visibility that will be shared across vendors and purchasers. Using 
BaaS in international business transactions may very well reduce processing time and costs 
significantly.

In a nutshell, the BaaS model allows companies to access a blockchain provider’s services so 
they can then access, develop, and deploy blockchain-based applications.

The growth of blockchain is clear, and along with that there will likely be the increased 
utilization of blockchain as a service on platforms such as IBM, AWS, and Azure. Other players 
such as Oracle, Alibaba, Baidu, Hewlett Packard Enterprise (HPE), Huawei, and Tencent 
currently have BaaS or will have potential availability shortly.

NOTE “One advantage of partnering with a BaaS provider is how users can leverage the lessons 
learned by the provider to help make their systems more secure.” —Bill Fearnley Jr., IDC research 
director of worldwide blockchain strategies (https://www.information-  age.com/ 
essential-  guide-  blockchain-  as-  a-  service-  123473581/)

One of the main benefits of using a BaaS vendor is that they provide all the necessary software 
deployments for blockchain as well as the infrastructure to the customer in a generally easy- to- 
consume subscription model. The vendor is then responsible for setting up and maintaining the 
backend of the blockchain’s infrastructure.

To clarify, there are certainly some BaaS platforms that are either a true software as a service 
(SaaS) or a platform as a service (PaaS) such as IBM Blockchain Platform. For example, IBM 
supports both SaaS and PaaS solutions quite well.

On the other hand, some blockchains as a service are really infrastructure as a service where 
you deploy infrastructure templates. For example, AWS Blockchain templates in the AWS 
Marketplace can help your company create and deploy blockchain networks on AWS using 
different blockchain frameworks. You would need to create your security groups, deploy 
CloudFormation templates, and determine networking configurations before deploying the 
blockchain. There is a level of AWS expertise that would be needed to deploy these templates in 
a production environment.

Benefits of Using a Blockchain as a Service
Cloud computing has been around since the early days of Amazon Web Services, which essen-
tially created the market for infrastructure as a service (IaaS) cloud computing. Cloud computing 
has numerous benefits for an enterprise, a startup, or even a home user. The reality is that IT 
infrastructure is expensive to procure and to maintain, and finding talented people can be a 



BLOCKCHAIN AS A SERvICE OvERvIEw | 185

challenge on a limited budget. Cloud computing has essentially leveled the playing field for both 
a consultant in Jacksonville, Florida, and a large multinational bank in New York City, thereby 
allowing them to use the same level of enterprise services on a scaled costing model, for example.

The benefits are realized because BaaS is being deployed on a cloud computing infrastructure 
that is managed by the cloud vendor. Some of the main benefits of using a blockchain cloud 
service include the following:

 ◆ Lower startup costs over traditional on-premises solutions that support opex funding

 ◆ Faster time to market due to no infrastructure lead-time requirements

 ◆ Services managed by provider, reducing your management responsibilities

 ◆ Support and expertise of service provided by the provider

 ◆ Scalability greatly improved by provider services

 ◆ Immediate data security benefits realized and managed by the provider

 ◆ Compatibility with current cloud services that the enterprise may be utilizing such as 
monitoring

Cloud services run blockchain applications, and it’s clear that the benefits are similar to what 
you would experience running perhaps your databases or virtual machines in the cloud.

Negatives of Using a Blockchain as a Service
Cloud computing, as we know, has many benefits, which some enterprises may or may not fully 
realize. Not all uses cases may realize the benefits due to the application frameworks, cost 
models, or development models utilized.

For example, while working as a presales architect in the data storage and cloud markets for 
more than a decade, I can certainly say that customers that do not generally manage resources 
well in-house will likely not manage resources in the cloud well either. Resource management is 
a must in using cloud resources effectively and efficiently. I have seen “cloud spend” skyrocket 
by more than 300 percent in just a few months, and the cloud engineers have no idea why this is 
happening. The two types of resources that generally take up most of the “cloud spend” are your 
data storage and your virtual machines.

The following are some of the negative results of using BaaS:

 ◆ Cloud spending costs are not managed appropriately, resulting in unexpectedly high 
cloud spending.

 ◆ Resources are centralized, and blockchains by definition should not be centralized for 
solid use cases.

 ◆ There is limited support for blockchain/ledger services on your provider of choice.

 ◆ Experienced cloud professionals are in high demand and hard to find.

 ◆ Cloud applications may not be portable once placed on a cloud provider.

 ◆ Performance issues such as latency may not be acceptable for your applications.

 ◆ Compliance violations can arise when the networking nodes are in data centers that are 
not in appropriate regions.



186 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

Table 7.1: Comparing BaaS Providers

AWS Azure IBM

Frameworks Ethereum, Hyperledger 
Fabric, Quorum

Ethereum, Hyperledger 
Fabric, Corda

Hyperledger Fabric

Deployment model IaaS, PaaS IaaS, PaaS PaaS

Service Blockchain templates (IaaS) 
and managed 
blockchain (PaaS)

Blockchain workbench, 
Blockchain templates

IBM 
Blockchain platform

Cost model Pay as you go Pay as you go Pay as you go

Cloud services run blockchain applications, and it’s clear that the negatives are similar to 
what you would experience running your databases or virtual machines in the cloud, so you will 
want to design judiciously.

Blockchain as a Service for Sales Teams
In Chapter 5, “Enterprise Blockchain Sales and Solutions Engineering,” I briefly discussed why 
using BaaS can enable a sales team by providing a platform for a proof of concept (POC) or for an 
actual production environment.

When considering a POC or a demo around any major blockchain, such as Hyperledger, Corda, 
or Ethereum, you can certainly leverage any number of the cloud providers to host your project. 
Using a POC or demo on a cloud provider can reduce your company’s overhead for infrastructure.

From my experience, if you’re a VAR, vendor, or systems integrator, you may have an internal 
platform you can leverage. The main challenge you may have is ensuring that you have the 
technical expertise to set up and maintain the platform.

In your situation, using BaaS may not be something you will need to be concerned with or 
need to plan for when hosting a POC or a demo. However, having options is always a great 
approach to consider for delivery of a POC or a demo.

For example, if you’re a partner of AWS at specific levels, you may have available credits to 
give to your customer to spin up cloud services. This could be very useful because it will allow 
you as a trusted adviser to essentially give your customer the keys to test it out, and your real 
role is to provide guidance and answer questions.

For me that was always the best route because anyone in presales can appreciate that even 
though they are doing endless POCs and demos, in reality, the customer may not be interested in 
your technology. If your customer is willing to “take the keys” and take initiative to learn, then 
this is clearly a benefit to everyone.

Blockchain as a Service Providers
The growth of blockchains has certainly created what seems to be a gold rush for cloud provid-
ers, vendors, and even VARs. Vendors and cloud providers are rushing to create their own 
blockchain services, whether it’s an IaaS solution, a PaaS solution, or even a SaaS solution. Note 
that Google has no current blockchain offering but announced plans for marketplace solutions at 
its annual conference in 2018.

Table 7.1 shows the mainstream cloud computing providers and the blockchain platforms 
they support at the time of writing.



AMAZON wEB SERvICES OPTIONS | 187

As you can see, the cloud providers have different cost models and deployment models. 
These differences can greatly affect the cost and scalability of the blockchain service.

It is important to note that even if a cloud provider does not have BaaS available, that does 
not mean you cannot deploy a blockchain on that provider. In that case, you can certainly deploy 
most blockchains on a container service that supports Docker containers. For example, Google 
Cloud Platform enables you to deploy Hyperledger Fabric on Kubernetes Engine or the 
Facebook Libra testnet on Compute Engine.

Amazon Web Services Options
At the time of writing, Amazon Web Services has two options to deploy blockchains: Amazon 
Managed Blockchain, which is a fully managed platform (PaaS), and Amazon Blockchain 
templates, which is essentially using containers that you set up and manage (IaaS). There is also 
a new distributed ledger technology service called Amazon Quantum Ledger Database (QLDB), 
which, at the time of writing, is still in prelease mode.

Amazon Managed Blockchain Amazon Managed Blockchain is a fully managed service 
that makes it efficient to create and manage scalable blockchain networks using the popular 
open source frameworks Hyperledger Fabric and Ethereum. Amazon Managed Blockchain 
eliminates the overhead required to create the network and automatically scales to meet the 
demands of thousands of applications running millions of transactions.

Figure 7.1 shows the Amazon Managed Blockchain service home page that has the 
introductory service information about the service. The direct link for the Amazon Managed 
Blockchain service is https://aws.amazon.com/managed-blockchain/. Note that Figure 7.1 
looks similar to AWS Blockchain templates. If you choose to go to the search engines instead 
of the direct links, they may have defaulted to AWS Blockchain templates, not the Managed 
Blockchain service.

The Managed Blockchain service makes it easy to manage and maintain your blockchain 
network. It manages your certificates, lets you easily invite new members to join the network, 
and tracks operational metrics such as usage of compute, memory, and storage resources.

Figure 7.1 
AwS Managed 
Blockchain



188 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

Amazon Blockchain templates This option is for customers who are looking to manage 
their own blockchain network and just need an easy way to set it up and get started. The AWS 
Blockchain templates service is the right fit in most instances I have seen.

Figure 7.2 shows the AWS Blockchain templates service and provides a highlight of the 
services. The following is the current link for Amazon Blockchain templates:

https://aws.amazon.com/blockchain/templates/getting-started/

NOTE The upcoming instructions will focus mainly on the Blockchain template for  
Hyperledger Fabric.

The AWS Blockchain templates service deploys the blockchain framework you choose as 
containers on an Amazon Elastic Container Service (ECS) cluster or directly on an EC2 instance 
running Docker depending on the deployment model.

The service costs are what you have already been paying for in AWS for basic services, 
essentially the use of the compute, network, and data resources. Effectively, you pay only for the 
resources you use, not the blockchain services with the Hyperledger and Ethereum templates.

The AWS blockchain solutions provided are across industries including financial market and 
commerce, supply chain, insurance, healthcare, and KYC and compliance.

Deploying blockchain services on AWS is relatively straightforward with the Blockchain 
templates once you get through the AWS required steps for security groups, virtual private 
clouds, and other networking-related tasks that must be set up before deployment. If the steps 
are not followed precisely, then the Hyperledger Fabric network will not work.

The instructions are broken down into high-level and low-level (step-by- step) instructions 
anyone should be able to follow. These instructions are provided as a baseline; cloud providers 
may change their interfaces, links, instructions, and best practices, so check with AWS before 
following the instructions here.

Figure 7.2 
AwS Blockchain  
templates



AMAZON wEB SERvICES OPTIONS | 189

The following instructions will reference this template for northern Virginia, as specified:

License: Apache 2.0 (Please do not remove) Apr 19, 2018 (bt-k5nffx4jb)
This template is clearly defined on the AWS template stack page, which I will reference again 

in the step-by-step instructions.

AWS Blockchain templates Deployment High-Level Steps
The following are the high-level steps to create a blockchain service on AWS with Blockchain 
templates:

1. Determine which blockchain (Ethereum, Hyperledger, or Corda) to deploy.

2. Determine which region on AWS to deploy on. Regions in AWS are effectively geographic 
locations of services.

3. Create a virtual private cloud (VPC), which is a logically isolated set of services in AWS.

4. Create key pairs and a security group, which are needed to access the virtual machines or 
containers in AWS.

5. Deploy the CloudFormation stack. CloudFormation is the AWS infrastructure 
deployment tool.

6. Deploy the Blockchain templates as required. Templates at the time of writing are 
Hyperledger Fabric and Ethereum.

7. Install chaincode for Hyperledger Fabric.

The preceding high-level steps have been simplified to give experienced AWS professionals 
an idea of what is expected before we progress into the step-by-step instructions.

Assuming that all the steps are followed correctly, that AWS makes no procedural changes, 
and that no outage occurs on any AWS service, these steps should take approximately two hours 
to complete. If you are experienced in AWS, you can assume it will take you approximately one 
hour to configure these services.

For more information about AWS Blockchain templates, refer to https://aws.amazon.com/
blockchain/templates/.

At the time of this writing, the templates are available only for Ethereum and Hyperledger 
Fabric. From a planning perspective, you should understand the regions the templates are 
deployed in, which are limited at the time of writing.

Understanding AWS Regions and Availability Zones
Regions are separate geographies, such as US East, US West, or EU Ireland. Availability Zones 
(AZs) are no more than isolated parts of a region that are logically segmented and maintain 
separate infrastructure for redundancy. Regions usually have three or four Availability Zones, 
providing availability for the services deployed in that region.

The limited availability of regions with AWS Blockchain templates could be a showstopper if 
you’re in the European Union or Asia. This would likely be due, for example, to possible latency 
that could be experienced as well as to meeting compliance requirements.



190 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

For more information on AWS regions and availability zones, refer to the following:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.
RegionsAndAvailabilityZones.html

At the time of writing, templates are available for the following regions:

 ◆ US East (N. Virginia) region (us-east-1)

 ◆ US East (Ohio) region (us-east-2)

 ◆ US West (Oregon) region (us-west-2)

Figure 7.3 shows the AWS Blockchain templates web page. You can choose from Ethereum or 
Hyperledger Fabric for Blockchain templates. For the purposes of this book, we will choose 
Hyperledger Fabric.

The AWS Blockchain templates use an AWS service called CloudFormation, and we will use 
this service to create a stack in AWS.

If you are not familiar with AWS CloudFormation, which is AWS’s version of infrastructure as 
code, you can consider CloudFormation as a stack in the development world, which is similar to 
a deployment workflow.

A workflow is also routinely referenced as a pipeline in many facets of application develop-
ment. This development workflow will deploy a private Hyperledger Fabric blockchain network 
on an Amazon EC2 instance and will deploy the required components such as networking, 
storage, and other required services.

Figure 7.4 shows the first part of the CloudFormation template, including the remaining 
parameters, such as EC2 key pair, security group, and other parameters. Figure 7.5 shows the 
second part of the template. A template is a preconfigured stack of resources in AWS. For more 
information on what a CloudFormation template is, refer to the following:

https://aws.amazon.com/cloudformation/aws-cloudformation-templates/

Figure 7.3 
AwS Blockchain  
templates https:// 
aws.amazon.com/
blockchain/templates/
getting-started/



AMAZON wEB SERvICES OPTIONS | 191

Note that we will not deploy this template yet, as we need to prepare the AWS environment. 
This discussion was to provide insight into what the template looks for around configuration 
variables.

Deploying Hyperledger on AWS
When using the AWS Blockchain templates, you’re essentially deploying a Hyperledger 
CloudFormation template that AWS has made free and publicly available to help facilitate 
creating a blockchain network hosted on an EC2 instance hosted in AWS.

The word template, of course, in most IT realms would seem as if we just have to click and 
deploy. Well, nothing could be further from the truth in AWS. The template you will use is only 
going to work after you actually set up the environment for the template, which includes the 
security groups, subnets, VPCs, and a host of other tasks.

To actually accomplish the proper setup of your AWS Blockchain templates, there are a few 
things you need to plan beforehand and set up to ensure your template deployment is successful, 
which we covered in the “AWS Blockchain template Deployment High-Level Steps” section.

Figure 7.4 
CloudFormation 
template, part 1

Figure 7.5 
CloudFormation 
template, part 2



192 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

1. Create a virtual private cloud (VPC) subnet. To clarify, we will need to create a subnet in 
two separate parts of this chapter. This first step covers only the first subnet that we 
will create.

This first subnet will be the address space used for the blockchain network services 
through the VPC. The second subnet will be created later when we get to that part of the 
AWS Management Console.

2. Create a security group that will allow traffic to the instance through only the ports 
you specify.

3. Launch an EC2 VM instance into the subnet and associate it with an elastic IP. (An elastic 
IP allows traffic to access the Internet.)

Creating a VPC Subnet
If you are not familiar with AWS, I recommend taking some basic training for using the cloud 
services before going outside of testing. I will spend some time covering the basics to clarify 
what some terms are such as a VPC and a security group to facilitate learning these subjects.

A VPC is an isolated deployment of compute resources in AWS. A VPC can also be compared 
to a sandbox or a containerized resource pool in the IT networking world.

This VPC needs to have a virtual networking structure setup, of which an elementary part of 
this networking structure is a subnet. A subnet is effectively used to communicate with other 
AWS resources but also used to effectively isolate that resource from other resources in the 
AWS Cloud.

For example, say you have ten different AWS EC2 virtual machines running different applica-
tions and they are all on different subnets or the same subnet. You can think of a subnet as a 
routing mechanism, an address space, or even a containerized network schema depending on 
your IT experience.

A VPC can have one subnet or many subnets per VPC. If a VPC does not make sense still, 
then I recommend you review the AWS documentation site or take a class in AWS.

REFERENCE To get started on the AwS journey with vPC, refer to the following:

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html

Now let’s get started deploying our cloud resources.
The first thing we would need to do is log in to the AWS Management Console, which is also 

known as the Cloud Console, Cloud Dashboard, and the AWS Management Console. For this 
book, I will reference the AWS Management Console to alleviate any confusion.

This book assumes you have an AWS account, which is required to access services on AWS. 
The instructions on how to set up an AWS account and log into the AWS Management Console 
are beyond the scope of the book. These instructions are on the AWS website, YouTube, etc., 
if needed.

The AWS Management Console is currently located at console.aws.amazon.com. (However, 
it is important to note that cloud providers are well known for changing links routinely, so 
validate any links provided accordingly.)

1. Log in to the AWS Management Console.

Figure 7.6 shows the AWS Management Console after you initially log in.



AMAZON wEB SERvICES OPTIONS | 193

The AWS Management Console is rather simplistic from an aesthetic standpoint. For those 
of you who may not be familiar with AWS, you can find the VPC dashboard by going to 
the Find Services box in the middle of console, entering VPC, and selecting the VPC 
Dashboard.

2. Select Launch VPC Wizard from the VPC dashboard, as shown in Figure 7.7.

There are several options for creating a nondefault VPC, but this chapter will focus on the 
following approach.

3. Select the VPC with a Single Public Subnet option, as shown in Figure 7.8, and then 
click Next.

A subnet is needed to ensure traffic is segmented appropriately as an address 
space on AWS.

4. Enter myblockchain as the VPC name, as shown in Figure 7.9.

For the purposes of this demo, leave the settings at the defaults. In your deployment, 
however, you will need to determine more detailed configurations, such as the endpoints, 
availability zone, hardware tenancy, and the CIDR range l. These configurations settings 
are beyond the scope required for this demo.

Figure 7.6 
AwS Management  
Console

Figure 7.7 
Launching the 
vPC wizard



194 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

5. Select Create VPC to complete the steps.

Figure 7.10 shows that the VPC was created.

6. Click OK.

You will then see the VPC menu, as shown in Figure 7.11.

Your VPC Myblockchain is now created, so you can move on to the next step in the process, 
creating a security group.

Figure 7.9 
Myblockchain vPC

Figure 7.8 
vPC 
Configuration dialog

Figure 7.10 
vPC- created 
confirmation

Figure 7.11 
vPC menu



AMAZON wEB SERvICES OPTIONS | 195

Creating a Security Group
A security group in AWS is a virtual firewall that helps facilitate proper network traffic to the 
EC2 instance at hand. You can think of a firewall (security group) as a barrier for your AWS 
networking resources, enforced by egress and ingress policies. Egress refers to traffic leaving the 
AWS Cloud, and ingress refers to traffic entering the AWS cloud. We need to have several ports 
open in these egress and ingress policies to allow traffic through.

We can configure several layers of firewalls. Effectively, we can configure a security group for 
our VPC and for our EC2 instance. In this demo, we will configure two layers of firewalls 
(security groups).

Enough of AWS 101. Let’s get to work.
We need to configure rules for outbound and inbound traffic to the instance. To do this, we 

will configure a security group.

1. Select Security Groups from the left pane, as shown in Figure 7.12.

2. Select Create Security Group.

The Security Group dialog box appears, as shown in Figure 7.13.

3. Enter the following variables and then click Create:

 ◆ Security Group Name: Hyperledgerblockchain

 ◆ Description: Hyperledger Fabric Deployment

 ◆ VPC: (The name of the myblockchain VPC you created previously.)

Figure 7.14 shows that the security group was created.

4. Select Close to advance to the Security Group dashboard, as shown in Figure 7.15.

5. View the security group list to validate that the security group you created is in your list.

Figure 7.16 shows the VPC security group has been created.

Figure 7.12 
Security Group menu

Figure 7.13 
Security groups



196 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

Now that the security group is deployed, we need to configure the outbound and inbound 
firewall rules.

6. Select the Inbound Rules tab from the bottom of menu interface, and then select 
Edit Rules.

Figure 7.17 shows the VPC Security group has been created and was selected. When it’s 
selected, the Security metadata properties are listed (Description, Inbound Rules, 
Outbound Rules, and Tags).

Figure 7.14 
vPC selection dialog 
completion

Figure 7.15 
Security group 
confirmation

Figure 7.16 
Security group listing

Figure 7.17 
Edit Inbound 
Rules interface



AMAZON wEB SERvICES OPTIONS | 197

Now that the security group is deployed, we need to configure the outbound and inbound 
firewall rules.

7. Select the Inbound Rules tab from the bottom of menu interface, and then select Edit 
Rules, as shown in Figure 7.18.

We have no rules, so we need to configure them for the blockchain services.

8. Select Add Rule from the middle left of the screen.

Figure 7.19 shows the Rule “Custom TCP Rule” on the drop-down menu.

9. Create two inbound rules: one for HTTP and one for HTTPS.

Enter the following for the HTTP rule:

 ◆ Protocol: TCP

 ◆ Port Range: 80

 ◆ Source: Custom, leave 0.0.0.0/0

 ◆ Description: http

Enter the following for the HTTPS rule:

 ◆ Protocol: TCP

 ◆ Port Range: 443

 ◆ Source: Custom, leave 0.0.0.0/0

 ◆ Description: https

Figure 7.18 
Edit Inbound 
Rules interface

Figure 7.19 
Edit Inbound Custom 
Rules initial window



198 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

Note that 0.0.0.0/0 is not a best practice and is effectively allowing access inbound from 
any address. Before deploying in your enterprise, confirm the proper address source to 
configure for your AWS deployment.

Figure 7.20 shows the Edit Inbound rules, which is for traffic entering the cloud network.

10. Add the firewall rules that allow HTTP and HTTPS traffic from anywhere and then select 
Save Rules.

Figure 7.21 shows that we have completed the inbound rules.

11. Select Close. This will bring you back to the Security Group dashboard (see Figure 7.22).

Figure 7.20 
Edit Inbound Rules with 
HTTP and HTTPS

Figure 7.21 
Inbound rules completed

Figure 7.22 
Rules successfully edited



AMAZON wEB SERvICES OPTIONS | 199

12. Select the security group again and view at the bottom of the screen the rules you created 
for HTTP and HTTPS. You should have only two rules that you created.

Note that in Figure 7.22, I added another rule to show the opposite of allowing all traffic 
with 0.0.0.0/0 versus disallowing all traffic with ::/0.

13. Select VPC Dashboard to go back to the main VPC dashboard, as shown in Figure 7.23.

Launching an EC2 Instance
In AWS, we call the virtual machines EC2, which stands for Elastic Compute Cloud. EC2 will be 
used in the following blockchain deployment.

Launching your blockchain service requires you to deploy one or more virtual machines to 
run the blockchain services. In this book, I will deploy one for demo purposes initially.

To launch EC2 virtual machines, perform the following steps:

1. Go back to the main Management Console and select EC2 from Find Services, as shown in 
Figure 7.24.

2. Select Launch EC2 Instances, as shown in Figure 7.25.

Figure 7.23 
vPC Dashboard

Figure 7.24 
Find Services in 
Management Console



200 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

We want to launch an instance that will meet the requirements for scalability and cost. We 
could use this AMI as the default Amazon Machine Image (AMI) or even a Free Tier 
Eligible AMI if we choose for demo purposes. In actual development or production, you 
would want to be cautious about your VM configurations for performance, integration, 
support, and cost reasons.

Figure 7.26 shows the Choose an Amazon Machine Image (AMI) menu page.

AMI Quick Start Steps

Before proceeding, I want to highlight the steps located at the top of the screen. There are seven 
steps, and I have highlighted the ones that we will cover. For the steps that display default, we will 
accept the defaults and proceed without selecting options for this demo only.

1. Choose an Amazon Machine Image (AMI).

2. Choose an Instance Type.

3. Configure Instance Details.

4. Add Storage (default).

5. Add Tags (default).

6. Configure Security Group.

7. Review (default).

Figure 7.25 
EC2 Dashboard

Figure 7.26 
Choose AMI Quick 
Start page



AMAZON wEB SERvICES OPTIONS | 201

3. For demo purposes, select the first AMI—the Amazon Linux 2 AMI (default). You could, 
of course, run the template on other versions of Linux if you choose. At the time of 
writing, more than 30 versions of machine images are available.

Figure 7.27 shows the configurations available with the Amazon Linux 2 AMI image. We 
will go with what’s available for the free tier.

4. Select your image T2 Micro (Free Tier Eligible) if available.

Note that Amazon may not have resources available in all regions at specific times due to 
the existing workload in the region.

In the next step, we will configure the EC2 instance.

5. Select Next: Configure Instance Details.

Figure 7.28 shows the initial Configure Instance Details settings we will configure.

6. Select the network that was created—Hyperledger Note.

7. Select the subnet that was created—Public Subnet.

Note that your naming would likely be more specific in a development or production 
deployment.

Figure 7.27 
Selecting the AMI 
configuration

Figure 7.28 
Configuring the 
instance details



202 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

8. Skip steps 4 and 5 and proceed to step 6.

Figure 7.29 shows that the security group that was created is selected. Note that the 
inbound rules do not show all the rules due to the screen scroll.

9. Select the security group for Hyperledger Fabric named Hyperledgerblockchain, as shown 
in Figure 7.29.

Figure 7.30 shows the Review Instance Launch page.

10. Validate that you selected the correct group, which will be reflected by a blue checkbox, 
and then select Review and Launch.

Note that selecting the wrong security group will effectively make your instance unusable 
without reconfiguration or deletion.

After hitting the Launch button, you will be prompted to create or save your key. The key 
is used for SSH access, so keep it safe on your desktop.

Figure 7.31 shows the key pair of the instance created.

Figure 7.32 shows the launch status of the EC2 instance.

Figure 7.29 
Security group selection

Figure 7.30 
Review Instance 
Launch page



AMAZON wEB SERvICES OPTIONS | 203

11. Select the small blue area with a crypto name that starts with “i.”

This will bring you to the EC2 Dashboard.

12. Review the instance in the EC2 Dashboard, as shown in Figure 7.33.

Figure 7.31 
EC2 key pair

Figure 7.32 
EC2 instance 
launch status

Figure 7.33 
EC2 Dashboard



204 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

We are now done with the EC2 instance configuration for this part of the process. The  
next step is to provision an elastic IP. An elastic IP is used to provision a static public IP,  
which is used to access the EC2 instance from traffic outside of AWS going into  
AWS (ingress traffic).

Figure 7.34 shows the VPC Dashboard where we need to go for the next step.

13. Select the AWS icon at the top of the console to bring you back to the AWS Management 
Console. From there, select the EC2 dashboard.

14. Select Elastic IPs from the left sidebar.

Figure 7.35 shows the Elastic IP menu.

15. Select Allocate New Address.

Figure 7.36 shows that the allocation for the VPC elastic IP has succeeded.

Figure 7.34 
vPC Dashboard

Figure 7.35 
Elastic IP menu



AMAZON wEB SERvICES OPTIONS | 205

16. Select Close to go back to the Elastic IP menu.

Figure 7.37 shows the IP configuration.

After validating our IP is allocated in the list, we can now proceed to provision a key pair. 
Key pairs are needed to provide SSH access.

17. Select the AWS icon at the top of the page and proceed to the AWS Management Console 
to select EC2.

The AWS Management Console is the home page effectively and also shows the recently 
visited services such as EC2 and VPC.

18. Select EC2 from the AWS Management Console Recently Visited Services or search for it. 
Below is the EC2 Dashboard, specifically the resources.

Figure 7.38 shows the one running instance, which we just launched.

19. Validate your key pair is correct.

Figure 7.39 shows the key pair created in previous EC2 steps.

20. Go to the Security Group section in the EC2 dashboard, as shown in Figure 7.40.

We now need to create another security group for the EC2 instance and create rules.

Figure 7.36 
Allocated new address

Figure 7.37 
IP configuration

Figure 7.38 
AwS Management  
Console



206 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

21. Select Create Security Group.

The Create Security Group dialog box appears, as shown in Figure 7.41.

22. Configure the security group as follows:

 ◆ Security Group Name: Blockchainbook

 ◆ Description: Blockchain security group

 ◆ VPC: myblockchain

23. Select Create.

The results should be similar to those shown in Figure 7.42 when it completes.

Figure 7.40 
Security 
Group dashboard

Figure 7.39 
validate Key Pair 
dialog box

Figure 7.41 
Security group 
configuration



AMAZON wEB SERvICES OPTIONS | 207

We now need to allow traffic into the security group, so we need to edit the rules of 
security group.

24. Select the blockchainbook security group and then click Edit.

The Edit Inbound Rules screen appears. Add the following to inbound rules, as shown in 
Figure 7.43:

 ◆ SSH for access from port 22

 ◆ Custom TCP for Monitoring port 8080

25. Select the SSH and Custom Rule items and also select MyIP, since it will pick up your 
source IP from logging into AWS automatically.

26. Select Save to save the rule and go back to the security group home page.

Figure 7.44 shows the newly created inbound rules.

We can now move on to creating identity and access management rules and policies.

Figure 7.42 
Security group 
configuration

Figure 7.43 
Editing Inbound rules

Figure 7.44 
Completed 
inbound rules



208 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

Granting IAM Permissions
We have created our required security groups and rules, provisioned an elastic IP, and deployed 
a VPC, key pair, and an EC2. Now we have to grant permissions for the AWS EC2 service to 
access services.

1. Select the AWS icon at the top of the menu to get back to AWS Cloud Management 
Dashboard.

2. Enter IAM in the Find Services box.

Figure 7.45 shows the IAM Dashboard. Proceed cautiously during the following steps, as a 
mistake will not allow the Hyperledger Fabric service to start.

3. Select Policies from the left pane. We want to create a policy for S3 and CloudFormation.

Figure 7.46 shows the IAM Policy menu. We need to create a policy that allows ECS to 
access S3.

Figure 7.45 
IAM dashboard

Figure 7.46 
IAM Policy menu



AMAZON wEB SERvICES OPTIONS | 209

4. Create an S3 policy that allows Full Read Access but limited List by searching for S3 and 
selecting the AmazonS3FullAccess, as shown in Figure 7.47.

5. Select the arrow by the AmazonS3FullAccess permissions. We need to ensure S3 has only 
read-only permissions, so we need to go into the S3 AmazonS3FullAccess policy and 
reduce the permissions.

Figure 7.48 shows the limited permissions to select for AmazonS3ReadOnlyAccess. Now 
we need to do the same thing as earlier for setting up permissions in the policy 
for AWS ECR.

6. Go to Filter Policies and search for Container, as shown in Figure 7.49.

7. Select AmazonEC2ContainerRegistryReadOnly.

Figure 7.50 shows the permission options available with specific services.

Figure 7.47 
S3 policy search

Figure 7.48 
S3 limited permissions



210 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

8. Select Create Policy.

The Create Policy dialog box appears, as shown in Figure 7.51.

Figure 7.49 
Container 
Registry search

Figure 7.50 
Container Registry 
Limited Permissions



AMAZON wEB SERvICES OPTIONS | 211

We need to add the policy via the policy editor. A policy defines the AWS permissions that 
you can assign to a user, group, or role. We will add S3 and then ECR.

9. Select the following:

 ◆ Service: S3

 ◆ Actions: Read

 ◆ Resources: All

Figure 7.52 shows the services available in AWS that we can provide policies for in S3.

Figure 7.51 
Create Policy dialog

Figure 7.52 
Add Service Editor



212 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

10. Select Add Additional Permissions from the bottom of the screen and perform the same 
routine for ECR as you did for S3.

11. Select Review Policy.

The screen shown in Figure 7.53 will appear.

12. Enter EC2BC as the policy name, and enter This is the policy for ECR and S3 for  
blockchain as the description.

The services in the Summary section should be Elastic Container Registry and S3.

13. Select Create Policy.

Figure 7.54 shows the available options. Note the EC2BC policy has completed.

Figure 7.53 
Review Policy dialog

Figure 7.54 
Review Policy dialog



AMAZON wEB SERvICES OPTIONS | 213

S3 is Amazon’s object storage service, and ECR is Amazon’s Elastic Container Registry, the 
container service that the Hyperledger Fabric containers are actually deployed on. I advise 
you to read the AWS IAM documents before configuring any AWS deployments because 
of the number of possible security vulnerabilities that could occur with improper setup. 
Refer to the following:

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

14. Create a role at the IAM Roles dashboard by selecting Roles in the left pane.

Figure 7.55 shows the IAM Roles dashboard, which appears more instructional 
than anything.

The role we need to create will be for EC2, and we will attach the policy we created earlier 
called EC2BC.

Figure 7.56 shows the roles creation dialog interface. Roles can be created for both users 
for what are machine-to-machine operations.

Figure 7.55 
IAM Roles dashboard

Figure 7.56 
Creating a role



214 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

15. Select Create Role. The Create Role dashboard appears.

16. Highlight the EC2 service, and then select Next: Permissions.

Figure 7.57 shows the Attach Permissions Policies options.

We will now go to the filter policy and add the policy EC2BC we created earlier.

Figure 7.58 shows the Create Role policy option for filtering.

17. Search the Filter Policies for the EC2BC policy and then select it.

18. Select Next:Tags to add a tag for easy identification.

Figure 7.59 shows the Add Tags window.

19. Enter blockchain as the key and EC2 as the value, and then click Next: Review.

Figure 7.60 shows the review panel we will view before proceeding.

20. Enter EC2Blockchain for the role name and click Create Role.

A list of roles will appear, as shown in Figure 7.61.

Figure 7.57 
Attaching permis-
sions policies

Figure 7.58 
Attaching an 
EC2BC policy



AMAZON wEB SERvICES OPTIONS | 215

Figure 7.60 
Reviewing tags for the 
EC2 policy

Figure 7.61 
EC2blockchain role 
among the list of roles

Figure 7.59 
Adding tags for 
EC2 policy



216 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

The EC2blockchain has been created, so we can proceed to the next step.

21. Click the role name to bring up the Summary page, as shown in Figure 7.62.

Note the ARN, which stands for Amazon Reference Name; it’s used to locate specific AWS 
resources. We can consider this similar to a namespace in the directory services world.

22. Validate the new role and note the instance profile ARN, which begins with a format of 
arn:awsxxxx. We will need to reference this ARN address later in the deployment.

We have finally created all the needed permissions, roles, and networking. We can now start 
to deploy our Blockchain template.

Deploying the AWS Blockchain template
In this section, we deploy the actual Hyperledger Fabric Template and then log in to our 
Hyperledger Fabric Deployment.

1. Go to the AWS Blockchain template page on AWS (https://aws.amazon.com/block-
chain/templates/getting-  started/).

Figure 7.63 shows the Blockchain template page on AWS. We will be using the 
Hyperledger Fabric CloudFormation template in this book.

Figure 7.62 
EC2blockchain 
role settings

Figure 7.63 
AwS Blockchain  
templates



AMAZON wEB SERvICES OPTIONS | 217

2. Select the Northern Virginia Hyperledger template for Hyperledger Fabric.

Note that Figure 7.64 and Figure 7.65 are the same template. The image was broken into 
two images because of the length of the template.

Figure 7.64 shows the stack name and parameters preset in the top part of the template, 
but we still need to complete the lower half of the template.

3. Enter blockchainbook as the name of the stack and optionally enter the channel and the 
domain (or select Default).

4. Proceed to the lower part of the template by scrolling down.

Figure 7.65 shows the lower part of the stack page. I preselected the ECC key pair and EC2 
security group and entered the ARN number that we noted in step 21 in the previous 
section. In your case, select the appropriate EC2 instance and available variables that meet 
your deployment requirements or select the defaults.

Figure 7.64 
AwS Blockchain 
templates, part 1



218 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

It’s important to double-check that we entered everything correctly, as modifying the 
template later could actually be more work than deploying a new one, depending on the 
variable misconfigured.

5. Enter the following:

 ◆ ECC Key Pair: blockchaindemo

 ◆ EC2 Security Group: blockchainbook

 ◆ EC2 Instance Profile ARN: Enter the EC2 instance ARN from step 21 in the previ-
ous section.

6. Select both the “I acknowledge” checkboxes (if you agree), and then click Create.

Figure 7.66 shows the status of the Blockchain template deployment. This process could 
take up to 10 minutes depending on the AWS region workload. However, you can select 
the blockchainbook2 stack and proceed since the status is updated dynamically.

Figure 7.65 
AwS Blockchain 
templates, part 2

Figure 7.66 
Stack creation initiated



AMAZON wEB SERvICES OPTIONS | 219

7. Select the blockchainbook2 stack to proceed to the stack page shown in Figure 7.67.

The CloudFormation template launched, deployed our blockchain network, and now 
shows complete. Let’s validate via the Event logs.

8. Select 4 More Events To Display to expand Events.

Figure 7.68 reflects the CloudFormation event logs and any other current information.

9. Select Outputs.

This will provide insight into the components of the blockchain deployment. Figure 7.69 
shows outputs of the CloudFormation template.

Figure 7.67 
Stack completed

Figure 7.68 
CloudFormation 
event logs

Figure 7.69 
CloudFormation outputs



220 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

10. Select the URL for the ExplorerURL in the Key column. The ExplorerURL is  
Hyperledger Explorer, the same as a blockchain explorer that is used for traversing the 
blockchain ledger.

Hyperledger Explorer provides visual insight into the activity on our blockchain network. 
It also provides detailed status information on the components that are online as well as 
the peers that are on the network.

Figure 7.70 shows our new network deployment in the Hyperledger Explorer.

Figure 7.71 shows the current default peer graph for the network that was deployed. 
PeerGraph is showing the current nodes (peers) deploying the blockchain network. We 
have nodes online in three orgs. Orgs are organizations that represent a party (user). 
Because Hyperledger Fabric has just been installed and we have not installed chaincode 
yet, we won’t have any further activity to explore.

Figure 7.70 
Hyperledger Explorer

Figure 7.71 
PeerGraph explorer



AMAZON wEB SERvICES OPTIONS | 221

11. Select Network to validate that the peers are online.

The Hyperledger Explorer Network tab shows our nodes in Figure 7.72.

12. Select Blocks to validate that the blocks have been written.

Figure 7.73 shows that we have blocks written to the blockchain.

Let’s review. We successfully configured a Blockchain template on AWS for Hyperledger 
Fabric. The process to set up networking, policies, and roles takes some time for the EC2 
instance. The CloudFormation template allowed us to deploy a blockchain in only a few clicks 
after the initial configuration was done.

Deploying AWS Managed Blockchain
AWS Managed Blockchain is a fully managed blockchain service that makes it easy to create and 
manage scalable blockchain networks using the open source Hyperledger Fabric and Ethereum 
frameworks. You can write smart contracts and applications and run them on the blockchain 
network to transact securely.

The membership in a Hyperledger Fabric network is your identity, which is known as an 
organization. This membership enables you to participate in the blockchain network. The mem-
bership rate also includes a Hyperledger Fabric certificate authority (CA) for user management 
and other shared network costs. You can create multiple network members in a given network.

Figure 7.72 
Hyperledger Explorer 
Network tab

Figure 7.73 
Hyperledger Explorer 
Blocks tab



222 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

There are four high-level steps to deploying the AWS Managed Blockchain service.

1. Create a blockchain network.

2. Invite members to join the network.

3. Add peer nodes to the network.

4. Deploy applications.

For the purposes of this book, we will deploy a simple Managed Hyperledger Fabric block-
chain service. Having a production-ready network, installed clients, and channels requires 
significant work, which you need to plan for. Expect to spend between six to seven hours on this 
platform setup.

For more information, refer to the AWS Managed Blockchain Service documentation at 
https://docs.aws.amazon.com/managed-  blockchain/latest/managementguide/ 
get-  started-  create-  client.html.

Creating an AWS Managed Blockchain Network
AWS Managed Blockchain is a relatively simple service that is provided by AWS for deploying a 
PaaS-based blockchain network. Developers can deploy nodes and then deploy their applica-
tions on the platform without worrying about the nodes.

1. Return to the AWS Management Console.

2. Enter Managed Blockchain in the Find Services box, as shown in Figure 7.74.

This will bring up the Managed Blockchain service, as shown in Figure 7.75.

3. Click the Create A Network button.

The Create Blockchain Network screen will appear, as shown in Figure 7.76.

Figure 7.74 
AwS Managed 
Blockchain con-
sole search



AMAZON wEB SERvICES OPTIONS | 223

Two templates are available: one for Hyperledger Fabric and one for Ethereum (Coming 
Soon). There are also two choices for a network edition. A network edition is the subscrip-
tion model. The network edition will determine attributes of the network, including the 
number of member, nodes per members, and other resources. The Starter network is 
limited in the images that can be deployed and the number of members and is considered 
a testing deployment. For production workloads, select the Standard network. The 
different editions have different consumption rates associated with the membership. For 
more information on pricing, refer to https://aws.amazon.com/managed-block-
chain/pricing/.

4. Select the Hyperledger Fabric template. For demo purposes, we will use the Starter 
network edition.

The Network Name And Description dialog box appears, as shown in Figure 7.77.

Figure 7.75 
AwS Managed 
Blockchain

Figure 7.76 
AwS Create Blockchain 
Network page



224 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

The voting policy is set up to confirm how many members need to approve a proposal. 
For example, if we have 10 peers and the approval threshold is 50 percent, then we would 
need to have 6 out of 10 peers approve the proposal to move forward; otherwise, the 
proposal would be rejected.

5. Enter myblockchainnetwork as the network name, leave the defaults for the Voting Policy 
settings, and then click Next.

The Create Member screen appears; enter a name and a description (optional).

6. Scroll down to the bottom of the Create Member screen, as shown in Figure 7.78. Enter an 
admin username and password, and then click Next.

Figure 7.77 
Network Name and 
Description dialog box

Figure 7.78 
Create Member screen, 
admin settings



AMAZON wEB SERvICES OPTIONS | 225

7. The Review And Create screen appears, as shown in Figure 7.79. The Review And Create 
screen has two steps: Blockchain Network and Member.

8. Review that the information is correct, and then click Create Network and Member.

This creation process will take approximately 15 minutes to complete. After the wait, we 
should see a status update from Creating to Available, as shown in Figure 7.80.

Figure 7.81 shows the updated Status now as Available.

Figure 7.79 
Review And 
Create screen

Figure 7.80 
Blockchain network 
configuration status



226 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

The blockchain network has been deployed and has created a managed blockchain network in 
AWS. Now we can move on to inviting members to join the network.

Inviting Members to Join the Network
Use the Create Member Proposals pane to remove members from the blockchain network or 
invite other AWS accounts to join.

1. From the list of networks in Figure 7.81, click your network’s name to reveal a set of 
option tabs. The Create Member Proposals option is on the Members tab, as shown in 
Figure 7.82.

2. Click Propose Invitation to invite a member.

The Create Invitation Proposal dialog appears, as shown in Figure 7.83.

To invite a member, you need to have the member’s AWS account number, which can be 
found in the account holder’s Account Settings.

Figure 7.81 
Blockchain network 
configuration 
completion

Figure 7.82 
Network details

Figure 7.83 
Create Invitation 
Proposal dialog



AMAZON wEB SERvICES OPTIONS | 227

3. In the Submit Proposal As drop-down, choose the member in your account that submits 
the proposal. (I’m choosing Production because that’s the account I am in.)

4. Enter an optional description, which will be displayed to other members.

5. Under “Specify AWS account(s) to invite to the network,” enter the account number for 
the AWS account. Click Add to enter additional accounts. Once all the potential additions 
are listed, click Create.

6. The member who submits the proposal must also vote on it (the system doesn’t assume 
you vote Yes!), so the next window is the proposal voting dialog shown in Figure 7.84.

The proposal has various information such as details, status, actions, and more to review 
before proceeding.

7. Select Propose invitation in the top right corner; you’ll be asked to confirm your vote 
(Figure 7.85).

Figure 7.84 
voting proposal  
selection

Figure 7.85 
vote On Proposal dialog



228 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

We are now done with the preconfiguration, so we can proceed to adding peers to 
the network.

Adding Peer Nodes to the Network
In this step, we will add peers to the blockchain network. Peers are also referred to as members in 
AWS blockchain. Figure 7.87 shows the members view and the proposal status.

One member was created by default. When considering blockchain transactions, we would, of 
course, need to have at least two members to make a trade, transaction, purchase, etc. Effectively, 
we need a buyer and a seller; without two members, the blockchain network provides no value.

When creating additional peer nodes, we will leave the defaults for demo purposes. If you 
were configuring the service for production, you would want to ensure that the peer nodes are 
correctly configured to limit any changes in the future.

Figure 7.86 
Policy completion

Figure 7.87 
Adding peers to 
the network



AMAZON wEB SERvICES OPTIONS | 229

The steps are as follows:

1. Select Create Peer Node.

The Create Peer Node screen will appear, as shown in Figure 7.88.

2. Select an instance type and an Availability zone, and then click Create Peer Node. (I am 
leaving the defaults for the demo.)

Figure 7.89 shows that the “Creating” process is still in progress. The process could take 
up to 10 minutes.

Figure 7.90 shows that the status has changed from creating to completed.

Figure 7.88 
Create Peer Node screen

Figure 7.89 
Node creation process

Figure 7.90 
Node creation process 
has completed



230 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

You may want to add additional peers for your development and production networks. 
You would want to confirm the EC2 instance template and Availability zone ahead of 
time, as you cannot change the configuration of the peer at the time of writing.

3. Create a second peer node by repeating the preceding steps.

Figure 7.91 shows the confirmation after you have created the second peer. You can now 
proceed to deploying applications.

We have now deployed a limited blockchain network on the AWS Managed Blockchain 
service. Your developers can now get to work installing chaincode as needed with further 
configuration.

Deploying Channels and Chaincode
Finally, your developers will want to install and run chaincode they have developed. Before 
proceeding, however, they would likely need to deploy a channel and then add chaincode.

In Hyperledger Fabric, a ledger exists in the scope of a channel. The ledger can be shared 
across the entire network if every member is operating on a common channel. A channel also can 
be privatized to include only a specific set of participants. Members can be in your AWS account, 
or they can be members who you invite from other AWS accounts.

For information on how to create a channel, visit the following site:

https://docs.aws.amazon.com/managed-blockchain/latest/managementguide/
get-started-create-channel.html

For more information on chaincode samples, refer to the following:

https://docs.aws.amazon.com/managed-blockchain/latest/managementguide/
get-started-chaincode.html

Figure 7.92 shows an example of the chaincode available from AWS.
The whole process to adding a channel and chaincode can take six to seven hours, depending 

on how your client setup goes. This is a new service out of preview mode, and, at the time of 
writing, limited information is available. The service looks promising for companies that want a 
limited blockchain network structure to get started developing blockchain applications on.

Figure 7.91 
Second node creation 
process has completed



IBM CLOUD BLOCKCHAIN PLATFORMS | 231

IBM Cloud Blockchain Platforms
IBM Cloud had several different blockchain deployment plans that can be used as an IBM Cloud 
subscriber. Blockchain Platform 1.0 is still in operation to current subscribers; however, it is 
closed to new subscribers. I mention IBM Blockchain Platform 1.0 only briefly because the 
platform was first to market and actually a pioneering, useful service for developers. IBM 
Blockchain was shut down effective December 31, 2019, to all customers.

IBM Blockchain Platform 1.0 IBM Blockchain was the first-generation platform that had 
two subscription models, Starter Plan and Enterprise Plan, which were true software as a 
service deployment models. It is important to note that existing clients can continue to add 
new members and create new networks until December 31, 2019.

IBM Blockchain Platform 2.0 IBM Blockchain Platform 2.0 is the second-generation 
platform and uses a pay-as-you-go model. That is, you pay only for resources used; there is no 
monthly fee. IBM Blockchain Platform 2.0 is the next generation of BaaS and is a flexible 
platform as a service (PaaS).

Both platforms deploy Hyperledger Fabric. The version of Hyperledger Fabric supported is 
maintained directly by IBM Cloud. Hyperledger Fabric allows components, such as consensus 
and membership services, to be plug-and-play for developers.

REFERENCE For a quick refresher on Hyperledger Fabric, refer to Chapter 2, to the “Enterprise 
Permissioned Blockchains” section in Chapter 2.

Blockchain Platform 2.0
Blockchain Platform 2.0, the second-generation platform, is vastly different from Blockchain 
Platform 1.0. Differences include the subscription model, user interface, deployment support, 
integration, and many other technical aspects. Blockchain Platform 2.0 provides an easy- to- 
deploy service that is deployed as a platform.

As discussed in the following sections, there are three high-level steps deploying the platform.

1. Set up Kubernetes cluster prerequisites if required. The prerequisite is to create a 
Kubernetes cluster if your IBM Cloud environment does not have a cluster available.

2. Link the cluster that was created.

3. Launch the Blockchain Platform 2.0 Console.

Figure 7.92 
Chaincode example



232 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

First, however, we need to select Blockchain Platform, which is the second-generation 
platform. Note that there are two main prerequisites.

1. Create a Kubernetes cluster with IBM Cloud Kubernetes Service in available regions.

2. Pay any fees associated with the IBM Cloud Kubernetes Service and your storage costs.

Deploying Your Blockchain Network and Service
Figure 7.93 shows the IBM Cloud dashboard, which is the starting point for deploying IBM 
Blockchain Platform 2.0.

The easiest way to deploy blockchain services is to search the catalog and select the service.

1. Select Catalog from the upper menu bar.

Figure 7.94 shows Blockchain as the only option. Blockchain shows up in the search, and 
the search will explain the service. To clarify for those that have not used IBM Cloud 
Blockchain is located under IBM Cloud as a database service.

2. Search for blockchain, and select the Blockchain service.

Figure 7.95 shows the blockchain service configuration variables for deployment. We can 
leave the service name, region, and resource groups at the defaults. We can also add tags 
to help identify resources for logging or compliance reasons, if required.

Figure 7.93 
IBM Cloud dashboard

Figure 7.94 
Blockchain plat-
form selection



IBM CLOUD BLOCKCHAIN PLATFORMS | 233

3. Click Create.

The next step is to review the blockchain platform wizard’s main menu, as shown in 
Figure 7.96.

4. Select Continue to advance to the Create Cluster section, as shown in Figure 7.97.

We can choose to create a new cluster or use an existing cluster.

Figure 7.95 
Blockchain platform 
service selection

Figure 7.96 
welcome to the IBM 
Blockchain Platform!

Figure 7.97 
Create Cluster Optional



234 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

5. Click Create A New Cluster.

The choice in cluster deployment is quite critical for a production workload and your 
cloud spending. Review the following page for deployment options, especially for 
memory and worker nodes:

https://cloud.ibm.com/docs/services/blockchain?topic=blockchain- 
ibp-v2-deploy-iks

6. Figure 7.98 shows the two choices for selecting a plan: Free and Standard.

For the purpose of development, the Free option is fine; it will set up a limited deploy-
ment for testing. (If you choose the Standard option, you will be able to choose your 
deployment configuration, shown in Figure 7.99.)

Figure 7.98 
Choosing to create a new 
free cluster or stand-
ard cluster

Figure 7.99 
New cluster options



IBM CLOUD BLOCKCHAIN PLATFORMS | 235

7. Click Free; then click Create Cluster. Figure 7.100 shows the cluster access information and 
is used to access the cluster and manage the cluster components. The cluster is being 
deployed, as shown in the top area next to mycluster. This process can take up to 20 
minutes to complete.

8. Select the Worker Nodes tab to proceed.

We can go to the overview window to see the progress of the worker nodes, as shown in 
Figure 7.101. The state is “Pending” for the worker nodes.

Figure 7.102 shows the Cluster Creation Overview window, which reflects 0 percent.

Figure 7.100 
Cluster creation progress

Figure 7.101 
worker node progress



236 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

9. Select Overview to validate status of the cluster.

The cluster will reflect the status of the cluster deployment. Figure 7.103 shows that the 
cluster has completed and is in normal status. It also reflects 100 percent, so we can 
proceed to linking the cluster to the blockchain platform.

Linking the Blockchain Cluster
Now we need to link the container cluster (Kubernetes) to the blockchain network services. To 
link the cluster to the Blockchain Platform, perform the following steps:

1. Select Link To A Cluster in the Blockchain Platform Wizard sidebar, as shown in 
Figure 7.104, and then select the cluster you created. In this case, it’s called mycluster.

Figure 7.102 
Cluster crea-
tion overview



IBM CLOUD BLOCKCHAIN PLATFORMS | 237

2. Select Deploy To Cluster at the bottom of the page.

Figure 7.105 shows that your cluster has been connected.

3. Select Launch The IBM Blockchain Platform Console. This will connect you to the console, 
as shown in Figure 7.106.

Figure 7.103 
Cluster creation 
completion

Figure 7.104 
Linking to a cluster

Figure 7.105 
Cluster has 
been connected



238 | CHAPTER 7 DEPLOYING YOUR BLOCKCHAIN ON BaaS

You will also receive an email from IBM Cloud welcoming you to the blockchain platform.
Now that we have set up the cluster and linked it to the blockchain network, we can move on 

to deploying blockchain resources.

Creating Blockchain Resources
The next step is to deploy resources such as peers, ordering nodes, and certificate authorities. 
Note that these resources need to be deployed in a specific order. Before deploying your  
production network, I advise you to review the blockchain deployment instructions and  
terminology here:

https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-ibp-v2- 
deploy-iks

You can get the whole platform ready in less than four to five hours if you follow the instruc-
tions for a limited deployment.

There is a really useful feature called Workflow. Workflow is similar to a wizard that provides 
guidance about what the next steps are in the deployment process. Select Get Started, as shown 
in Figure 7.107, to access the instructions and help pages.

Figure 7.106 
welcome to the IBM 
Blockchain 
Platform screen

Figure 7.107 
Blockchain Platform 
workflow instructions



SUMMARY | 239

The Blockchain Platform has numerous resources, including videos and free classes. 
Blockchain developers should find the platform interesting and quite efficient to use once the 
learning curve is over.

Other Blockchain Services

Currently, there are more than 35 cloud-based blockchain services on the market from cloud provid-
ers and software providers. These blockchain services are generally IaaS- or PaaS-based solutions. 
Examples include Microsoft Azure and Google Cloud. For example, Google Cloud offers Cloud 
Marketplace solutions that are similar to AwS Blockchain templates.

Other providers, including Oracle, SAP, Deloitte, and Blockstream, are more niche focused.

Summary
This chapter covered two of the most common blockchain as a service (BaaS) providers, AWS 
and IBM, as well as their blockchain deployment processes. Numerous other providers also 
provide services that are more niche markets, such as Azure, Oracle, or Digital Ocean, that are 
valid solutions for the right use case.

BaaS is a cloud services offering that allows customers to leverage cloud-based solutions to 
build, host, and use their own blockchain apps, smart contracts, and functions on the blockchain.

Deploying BaaS on AWS is more time-consuming because you need to set up EC2 and the 
affiliate networking configurations. However, once your VPC, security groups, and policies are 
created, you can simply deploy the Hyperledger Fabric template, which is through a 
CloudFormation template.

Finally, IBM deploys Hyperledger Fabric on its managed blockchain service, and deploying it 
is simple. Blockchain Platform 2.0 is the next-generation platform that provides developers a 
rapid on-ramp to a managed blockchain platform.



Chapter 8

This chapter covers some of the potential focus areas of enterprise blockchain use cases that can 
provide value to not only the organization but also their suppliers, customers, and partners. I 
will touch on just a few of the use cases that have been announced, although new announce-
ments are made every day.

Blockchains generally need to have both technical and business merits for an enterprise to 
consider the initial use case for a blockchain solution. In other words, the blockchain use case 
needs to address at least the technical or business merits; ideally, however, it will address both. 
Companies really need to have merits that make both business and technical sense and that drive 
value for the company.

Technical merits can be achieved in organizations that are slow to adopt new technologies. 
Generally, companies that are behind on initiating innovation can derive value from an innova-
tion easier.

Business merits, on the other hand, can be more challenging to define such as how a block-
chain can provide for a consistent solid return of investment (ROI) or does that new blockchain 
application provide a more consistent user experience. A company might realize technical 
benefits but not any tangible business benefits such as cost savings. However, this is becoming 
less of an issue as the evolution of blockchain value is properly defined, especially to organiza-
tions that are reaching end of life on some of their current legacy applications.

A slew of new use cases are being announced daily, and real-world implementations are being 
launched around blockchains such as Ethereum, Hyperledger, Quorum, and Corda.

Several of the more compelling areas of acceptance of blockchain technology are found in the 
financial, logistics, and government sectors. These sectors show no signs of slowing down in the 
acceptance of blockchains. Other industries are clearly showing signs of acceptance, including 
manufacturing, mining, and retail.

The goal of this chapter is to give you a wide view of the potential use cases for blockchain. 
It’s evident that blockchain is more than cryptocurrency and payments. Transfer of value is not 
just transferring money from point A to point B. Blockchain can also be utilized to transfer real 
estate deeds and other assets.

NOTE The global blockchain business value will reach $2 trillion by 2030. —IHS Markit

Merits of Blockchain Acceptance
As with any new technological innovation, there are challenges to the acceptance of the value  
of blockchain technology to the enterprise and the consumer. These challenges can revolve 
around the technology, costing models, and even human perception. For example, in the 1970s 

Enterprise Blockchain Use Cases

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



242 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

and 1980s, we had the war of Betamax (Sony) and VHS (JVC). Betamax was superior in many 
ways, and it became simpler to use with more excellent picture quality than VHS. Its tapes were 
smaller and easier to store. You would think that Betamax would have won the war. However, 
VHS was able to extend its recording time to around 4 hours. Consumers preferred recording 
movies, and this was a challenge with Betamax since it could record for about one hour due to 
the length of its tape. Sony did not innovate in time to meet the real consumer requirements and 
did not understand the end consumer, resulting in the end of Betamax.

The same can be said for enterprise technologies as well as other consumer technologies. 
Some enterprise technologies around networking and data storage have clear advantages over 
others. However, sometimes the better technology just does not win.

Why? It’s clearly about marketing, consumer messaging and support, and costing models. 
Understanding your customer or enterprise requirements is critical to gain acceptance of your 
blockchain projects.

Some of the more common challenges to blockchain acceptance could be around technology, 
costing models, and human perception. These challenges are for the most part similar to what 
you have experienced with other technologies sales and solutions.

Common challenges include the following:

 ◆ Budgets and cost models

 ◆ Decentralization of resources

 ◆ End user experience of dapps

 ◆ Training of both executives and end users

 ◆ Vendor acceptance

 ◆ Integration of blockchain services

 ◆ Political environment

 ◆ Compliance requirements

In addition to the challenges, however, there are clearly a number of benefits that blockchain 
can accomplish in many different industry sectors. This section covers some of these merits.

Technical Merits of Blockchain
The technical merits of blockchains can range from the use of cryptography to the implementa-
tion of smart contracts. These technical merits are generally accepted to be proven and effective 
around blockchain.

It is important to remember that blockchains are not built on new technologies. They are, for 
the most part, built from a molding of three existing technologies that have been around for 
decades. The molding of these technologies presents innovations for enterprises to create efficien-
cies, provide transparency, and results in numerous other benefits.

These technologies are proven and effective in their implementations from a historical 
perspective are as follows:

 ◆ Peer-to-peer networking

 ◆ Cryptography

 ◆ Computer code (smart contracts)



MErITS of BlockcHaIn accEpTancE | 243

When we consider these technologies, we can see how simple the use cases for each technol-
ogy could be applied at a high level. For example, encryption is used to ensure that your 
message data is sent securely from the sender to the receiver in such a manner that it cannot be 
read by anyone other than the receiver. Privacy, security, and confidentiality could all 
be achieved.

I appreciate how companies can view peer-to-peer (P2P) networking negatively and want to 
shut down discussions about it. Centralization is comfortable for companies since they’re in the 
driver’s seat. With decentralization, companies are effectively in the passenger seat regarding 
control and governance.

At its truest sense, decentralization is all about trust. Successful blockchains work in a manner 
of true consortium with a shared responsibility model. A shared responsibility model is where all 
the consortium members collaborate and contribute finances and labor.

A smart contract is nothing more than the implementation of computer logic, aka computer 
code. Essentially, either we receive a positive result or the smart contract (code) does not execute 
the proposal.

Smart contracts provide the greatest benefits when there is an intermediary process that was 
once a manual process that now can be removed. Smart contracts are not complex. There are 
containers in most blockchains with limited functions that could be executed.

Another way to describe a smart contract is as a microservice. A microservice contrasts to a 
traditional, monolithic application, which, from a software development perspective, is designed 
and built as one integrated application. An application could have 10, 20, or even hundreds of 
microservices. Microservices can aid in the development of an application and provide signifi-
cant cost savings around manual processes. Smart contracts are microservices, and microservice, 
which can be combined to create a distributed application.

For more on microservices, smart contracts, and dapps, refer to Chapter 10, Chapter is now 
“Blockchain Development”

Removing manual processes through the implementation of smart contracts provides clear 
efficiencies around costing models, error rates, and the processing speed of a transaction. For 
example, if your bank once had transactions, such as a wire transfer, that would take hours or 
even a day to be executed and confirmed, this type of process would be a great target for a smart 
contract to provide value and, therefore, a possible use case.

Technical merits provide other benefits, such as user experience, integration, or a more 
efficient experience for the enterprise. However, some technical aspects—such as not being able 
to achieve transactions per second (TPS), latency, risk mitigation, or other significant concerns—
can hinder a use case implementation.

Business Merits of Blockchain
The most compelling use cases focus on reducing inefficiencies, providing transparency, and 
meeting compliance demands that companies face in this dynamic world. For example, remov-
ing inefficiencies could unlock value in areas of existing industry where trusted intermediaries 
were once required to record, validate, and reconcile transactions. This would be a change of a 
business model, which could be very disruptive to the status quo.

Generally, enterprises want to realize cost savings and create efficiencies in their current 
transactional processes. If you can provide cost savings in your blockchain solution, then you are 
well on your way to having a potential use case.



244 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

Common Elements of Blockchain Adoption
Some common elements that can be assessed by the blockchain-focused organization are whether 
or not a blockchain deployment could be performant. Elements such as transparency will be 
realized in a public blockchain, whereas others will be realized in a permissioned or a private 
blockchain.

The following are some commonly realized advantages of private blockchains:

 ◆ Networking and collaboration benefits

 ◆ User experience enhancements

 ◆ Security and risk mitigation

 ◆ Privacy enhancements

 ◆ Transparency and performance

 ◆ Cost savings for the enterprise

Financial Sector Use Cases
Blockchain is driving incredible disruption across the financial services industry. Contrary to 
what is being portrayed by the media, this disruption is a “clear and present” danger to parts of 
the financial sector. The sector has a slew of inefficiencies that are being updated by blockchain 
consortium or even business models that are being compacted by the loss of revenue by crypto-
currencies such as Bitcoin, Litecoin, and Monero.

On the other hand, for the banking sector, blockchain can offer a cost savings exercise when 
properly specified with appropriate use cases. For example, it could lower the cost for compliance 
reporting requirements by more than 70 percent for some dedicated financial services companies.

The financial sector is effectively being disrupted by blockchain technologies not just on one 
battlefront but on multiple battlefronts. The distributed ledger platforms that have defined 
concise leadership in the space include Ripple, Corda, and Hyperledger.

The antiquated financial sector is ripe for both disruption and innovation that clearly is 
required for the globalization of consumerism. The SWIFT network is more than 40 years old and 
relies on a network infrastructure that has not been improved upon since its inception. 
Companies such as Ripple have effectively challenged the status quo on cross-border payments 
through well-deployed infrastructure, detailed member benefits, and clearly defined efficiency 
opportunities for its members.

NOTE “Global payments are undeniably going through a sea change, led by financial institutions adopt-
ing blockchain to fix their customers’ broken payments experience. now more than 100 financial insti-
tutions are looking to ripple as the solution to the problem. . . .” —Brad Garlinghouse, cEo of ripple

A study released by Juniper Research states that by deploying blockchain technology, finan-
cial institutions stand to generate savings amounting to more than $27 billion on cross-border 
settlement transactions before the end of 2030 (https://www.juniperresearch.com/press/
press-  releases/blockchain-  deployments-  to-  save-  banks-  more).

These numbers are quite impressive, and these potential savings are being discussed in the 
boardrooms across the world.



fInancIal SEcTor USE caSES | 245

This section discusses the following areas around the use cases for the financial sector’s 
significant investments into the blockchain:

 ◆ Cross-border payments

 ◆ Know your customer (KYC)

 ◆ Peer-to-peer (P2P) lending

 ◆ Security tokenization

These are just a few selected areas in the financial sector that are clearly benefiting or will 
likely be benefitting from blockchain. I found more than 120 different financial use cases at the 
time of writing.

Cross-Border Payments
Companies that provide value by processing payments, processing cross-border payments/
transfers, and offering other financial intermediary services are typically a clear target for 
blockchain adoption and for that matter, initiators of blockchain innovation.

The inefficient payment protocols and payment systems of the legacy banking networks. 
Blockchain provides instantaneous payment solutions without payment intermediaries.

 ◆ The historical fragmentation of payment networks that have been in existence for more 
than 50 years. Blockchain is a newer and more efficient approach that is able to cross 
borders without fragmentation.

 ◆ Intentionally high costs around payments and their processing fees that are passed on to 
consumers. Blockchain costs are a fraction of what a traditional payment processor charges.

 ◆ Ever increasing and more complex compliance regulations and governance required in the 
banking sector. Blockchain is a peer to peer to platform that is not heavily regulated and 
requirements are limited as of today.

 ◆ The lack of transparency coupled with low consumer trust that has been inherent in the 
banking systems. Blockchain can be deployed in a public manner where anyone can join, 
send and receive funds and even view transactions. Transparency is the key benefit here.

Two examples of innovation through a consortium method are R3 and Ripple, which have 
effectively written the book on creating value around blockchain for their consortium members.

The concisely documented benefits—such as cost efficiencies, processing speed, and compli-
ance adherence—are just a starting point for financial institutions. Reducing complexity, increas-
ing efficiency, and providing value are generally the hallmarks of these leading companies.

Financial institutions typically have significant overhead in areas such as compliance, legal, 
and personnel. In the case of payments, there has traditionally been several challenges for 
organizations. Payments are considered inefficient and generally more complex than needed.

An organization that has intermediaries that effectively process, validate, and post transac-
tions can benefit immediately from employee costs in all three of those areas.

 ◆ Ancillary benefits for the enterprise could be reduced fraud, elimination of chargebacks, 
and customer retention.

 ◆ Ancillary benefits for the customer base would be transparency, reduced fees, and 
increased efficiency of funds receipts/deposits.



246 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

Organizations traditionally have had challenges around payments, such as compliance require-
ments, systems that are not integrated, and costly inefficiencies. There are blockchains that can 
provide some significant efficiencies around cross-border payments. One such platform is Ripple.

Ripple has been increasing the acceptance of its cross-border payment technology at a rapid 
pace and onboarding a slew of new companies with their payment processing benefits. At the 
time of writing, 19 companies either have already implemented XRP for cross-border payments 
or are planning to, according to the latest report from Ripple Labs.

R3 recently announced that it will be providing XRP integration into its R3 Corda platform as well. 
R3 Corda is a consortium of some of the world’s largest financial institutions. R3 Corda Consortium 
created an open source distributed ledger platform called Corda and has a wide acceptance in the 
financial industry. Its partner network has more than 60 companies. This integration of Ripple XRP 
integration opens the door to even more exciting and efficient opportunities with Corda.

Part of the Ripple ecosystem includes XRapid and Ripplenet. Ripplenet is the actual payment 
network of more than 200 banks and payment providers. XRapid is a liquidity solution that 
eliminates delays in global payments on Ripplenet while also dramatically lowering their cost, 
thus making cross-border payments instant and inexpensive.

Figure 8.1 shows how a payment transfer with Ripple works with xRapid settlement.

Ripple is a real-time gross settlement system (RTGS), currency exchange, and remittance 
network that has a well-established footprint in the financial sector.

The following are some highlights about Ripple and its underlying structure:

 ◆ Ripple enables global payments through its digital asset called Ripples or XRP. XRP is the 
native token on Ripple’s blockchain.

 ◆ Ripplenet is the private implementation of Interledger (ILP), which is the open protocol 
suite for sending payments across different ledgers.

 ◆ xCurrent is Ripple’s enterprise solution that is responsible for facilitating the  
instantaneous settlement and end-to-end tracking of cross-border payments between 
RippleNet members.

$

Payment Providers Payout Bank

Beneficiaries

XRP/JPY

XRP/MXNXRP/KRW

KRW

JPY

MXN

Figure 8.1 
ripplenet pay-
ment network



fInancIal SEcTor USE caSES | 247

 ◆ The RippleNet ecosystem has two categories for participants: network members (banks 
and payment providers) and network users (consumers and corporations).

 ◆ Transactions per second (TPS) average 1,500 TPS, a substantial TPS for an enterprise 
blockchain.

From a technical perspective, there is a lot to consider and understand about Ripple. Ripple 
has clearly defined several use cases around cross-border payments and other significant aspects 
in the financial sector. You can find out more about Ripple at https://www.ripple.com/.

Know Your Customer
Knowing your customer (KYC) is one area that blockchain shows some promise for improve-
ments. KYC processes are commonplace within traditional businesses for many good reasons. 
The main reason is government compliance. Other reasons are around the goal of reducing fraud, 
reducing chargebacks, and reducing any liability exposure.

Financial institutions are required to participate in the KYC process with customers to comply 
with regulations that are routinely identified as either one or both of the following:

 ◆ Anti-money laundering (AML)

 ◆ Countering the financing of terrorism (CFT)

Organizations have challenges around KYC, most of which include the following:

 ◆ High validation costs

 ◆ Redundancy in companies with multiple lines of business

 ◆ Customer satisfaction

 ◆ Lack of complete audit trails

Figure 8.2 shows how a blockchain-based KYC solution works.

Verify and
Store

3

Request to
Open Account

1

Get KYC
Proof

HOME
LOANS

2

Apply for
Home Loan

5

KYC Recorded
on Blockchain

4

Request
KYC Docs

7

KYC
Done

BLOCKCHAIN

6

BANK

Figure 8.2 
kYc blockchain solution



248 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

The customer typically provides KYC documents each time they require services from 
different organizations. This could also be true if you have tried to open a bank account one day 
and then an IRA a week later. They may require verification of the same documents such as your 
state identification, SSN number, tax ID, or even credit information.

Imagine if companies were able to share customer KYC information in a secure and easy 
manner while retaining the confidentiality and privacy of customer documents. This could 
provide some great benefits for the customer and the financial institutions. A consortium 
blockchain could be implemented to address this and would instantly reduce some redundancies 
since the consortium members would share the costs.

Blockchain will now allow for an accumulation of data from multiple authoritative service 
providers into one single, cryptographically secured database.

Verifications by a blockchain architecture will present the opportunity for financial institu-
tions to provide a faster KYC solution for their customer base. This alleviates the headaches such 
as wait times on certain transactions after an account is opened.

The following are some benefits of a KYC blockchain:

 ◆ Increased customer satisfaction and higher retention

 ◆ Reduced operational costs while increasing efficiency

 ◆ Increased features such as audit trails, logging, and search

Blockchains can address most compliance requirements well due to their immutability— 
specifically, around maintaining records of customer identification, transactions, and 
privacy data.

Peer-to-Peer Lending
Anyone who has ever taken out a loan knows that the process can be cumbersome and ineffi-
cient. A decentralized blockchain solution can provide clear benefits.

 ◆ Increased efficiency in loan approvals, providing a faster time to market

 ◆ Reduced costs for both the lenders and consumers where efficiencies can be clearly 
documented

 ◆ Elimination of third parties in the lending process, resulting in both cost efficiency as well 
as a reduction in manual errors

 ◆ Increased customer satisfaction and loan performance, resulting in a higher return on 
investment for the lender

Lendoit is a good example of a P2P  blockchain-based company. Figure 8.3 shows the P2P 
lending process that Lendoit uses to provide business loans. Its platform is decentralized from its 
disclosures.

You can find out more about Lendoit at https://lendoit.com/.

Security Tokenization
Security tokenization is one area of FinTech that is clearly a major discussion point at both blockchain 
and FinTech conferences. Security tokenization works by taking assets that are considered illiquid 
and making them liquid by “tokenization” on a blockchain-based platform. For example, a major 
financial trading firm could take a collateralized real estate fund that has real estate assets and 
essentially make fractions of a 20-story building available to noncertified investors.



loGISTIcS USE caSES | 249

NOTE “It’s inevitable that security tokens will transform equity just as bitcoin has transformed cur-
rency, because they afford the owner a direct, liquid economic interest and the expedited delivery of 
proceeds. Every type of ownership can be tokenized, which is a massive multi-trillion dollar address-
able market.” —carlos Domingo, SpIcE capital

When it comes to tokenization, it is important to realize that the Security and Exchange 
Commission has provided two categories of tokens: security tokens and utility tokens. The main 
concern for providing a new blockchain project is to understand which type of token they will be 
releasing to the public as an investment with strict regulations.

The Howey test is used to determine whether a token is a security token or a utility token. The 
test was devised by the U.S. Supreme Court to determine whether certain transactions qualify as 
“investment contracts.” For more about the Howey test, see https://consumer.findlaw.com/
securities-  law/what-  is-  the-  howey-  test.html.

A crypto token that passes the Howey test is historically deemed a security token. This type of 
token derives its value from an external, tradable asset. Because these tokens are deemed a 
security, they are subject to federal securities regulations. If all the regulations are properly met, 
then these tokens have immensely powerful use cases.

Logistics Use Cases
Logistics is an industry segment that has hundreds of possible use cases around transport, farm 
to table, mining operations, and many more industry verticals. There really is not a shortage of 
use cases for logistics. This section covers three areas that I feel will have significant impact on 
the acceptance of blockchain technology.

Borrower

Debt Secondary Market

Smart Scoring

Borrower Get a Loan

Loan Smart Contract

Mutual Compensation
Fund Smart Contract

Lenders Lend

Lenders Get Return

Lenders

Lenders Get Return

Figure 8.3 
p2p Blockchain lending



250 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

Supply Chain
One the more interesting use cases for blockchain is in the logistical area of supply chain man-
agement. One of the biggest challenges that enterprises might deal with is effectively managing 
their supply chain and handling transparency for partners, customers, and regulators.

In the use case for logistics, the use of a blockchain can provide an immutable historical 
record, for example, of a mining operation and for its material purchases the ability to validate 
when a specific lot of gold, diamonds, or other commodities were mined and from which mine. 
This can provide transparency as well for the consumer.

One of the more compelling logistics supply chain blockchains is called TrustChain. A collabo-
ration between jewelry industry conglomerates, TrustChain enables customers to track their 
jewelry from source to dealer. The consortium is now past the proof-of-concept stage and 
expanding its membership.

The main benefit realized from TrustChain is transparency across the entire diamond, gold, 
and finished jewelry supply chains. Jewelry customers can be assured that their products were 
sourced ethically, efficiently, and transparently. Consumers will be provided with a permanent 
digital record of all the transactions in the diamond and jewelry value chain.

Internet of Things
There is no question that the Internet of Things (IoT) is one of the technologies that is gaining a 
significant amount of interest. The convergence of blockchain and IoT has been prioritized by the 
blockchain industry as one of the most promising use cases for blockchain. Building smart 
machines that can communicate and operate via blockchain has clear advantages.

By their very nature, blockchain records are transparent; therefore, activity can be tracked and 
analyzed by any party authorized to connect to the network. For example, tracking, health 
monitoring, or fitness devices could use a decentralized ledger that would provide an immutable 
record of behavior.

The data collected by these devices could be stored on a ledger not only for immutability but 
for data standardization. For example, a blockchain platform called IOTA is a decentralized 
transactional platform on various development projects. IOTA’s Tangle is a transactional data 
transfer and settlement system for connected devices. These connected devices could be con-
nected and validated to a decentralized ledger.

The following are the three main benefits of blockchain for IoT according to IBM:

 ◆ Building trust

 ◆ Cost reduction

 ◆ Acceleration of transactions

From IBM’s point of view, it’s clear that blockchain and IoT will likely proceed into a deeper 
relationship in the sense of integration with other platforms.

The security and transparency provided by numerous blockchain-based platforms can 
empower but also enhance smart cities’ use cases relying on shared information, common 
databases, ledger features, and other benefits.

For more information on IOTA, see https://www.iota.org/.



loGISTIcS USE caSES | 251

Farm to Table
Perhaps one of the more complex use cases would be a “farm-to-table” use case in the agriculture 
sector. Farms are generally slow to invest and adapt to technology, and record keeping is not a 
consistent process. Blockchains could resolve a significant issue around recording where a 
product came from, where it is in the supply chain, and when it will arrive at its destination. A 
significant number of blockchain-focused agricultural solutions focus on improving food source 
traceability as well as accountability.

However, this brings into play an amazing use case of identifying challenges that can be 
addressed by implementing a blockchain. The challenges include provenance, traceability, 
transparency, and even compliance concerns around U.S.-based customs requirements.

Now more than ever, customers are demanding more accountability from their supermar-
kets and food suppliers. There is clearly a need for a more transparent producer-to-consumer  
system.

A blockchain could enable not just a food supply chain but any chain that requires traceability. 
This would enable a true use case of transparency for a food chain entirely verified by the 
consortium members. For example, if there were a concern around food safety, then all parties 
involved would have clear transparency, provenance, and even the ability to address other 
concerns through a blockchain-based implementation of a farm-to-table solution.

One of the more compelling use cases addresses the food supply chain directly. Figure 8.4 
references the food supply chain with high-level details to show the number of intermediaries, 
sources, stakeholders and so on.

Stakeholders could be farmers, food inspectors, logistics providers, distributors, consumers, 
and even governments. The challenge is that the present food logistics structure is maintained at 
different levels by several intermediate stakeholders.

In the case of food source accountability, blockchain can provide for transparency, trust, and 
provenance. Enabling blockchains can provide significant advantages to stakeholders, including 
real-time access, trusted data, and peer-to-peer networking. When blockchain is combined with IoT, 
the benefits can easily be realized during the logistics processes. For example, some benefits could be 
that farmers are paid more quickly traceability is immediate, insurance claims could be processed 
faster and so on.

For more information on a farm to table blockchain solution, see https://tefoodint.com/.

Fields

Storage

Food Processor

Food Manufacturer

Distributor

Retailer

Kitchen

Figure 8.4 
food supply chain



252 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

Government Use Cases
It’s clear that certain government entities could benefit from blockchain implementations, 
which is why we are seeing a significant growth in blockchain use cases for government 
customers. This is counterintuitive since anyone who has worked directly with government 
organizations—whether federal, state, or local—knows that those “wheels” generally turn 
somewhat slowly.

Governments such as Dubai are the first-to-market leaders when it comes to investments in 
blockchain technology but also for providing real-world implementation road maps for others 
to follow.

The federal government of Australia recently announced a national blockchain roadmap 
strategy and an additional investment of AU$100,000 in further funding. That was on top of the 
AU$100,000,000 that was already committed.

Additionally, the Swedish land-ownership authority conducted a successful proof of concept 
(POC) between individuals to buy and sell properties on a blockchain.

Numerous other countries are looking at blockchain. Chile, China, Estonia, Singapore, 
Switzerland, Brazil, and Canada all have announced significant roadmaps, proof of concepts, or 
intentional direction to act on blockchain implementations.

IBM has released a survey, titled “Building Trust in Government: Exploring the Potential of 
Blockchains,” that’s worth a look. You can find it at https://www.ibm.com/downloads/
cas/WJNPLNGZ.

City/State of Dubai
Dubai is clearly in the forefront of blockchain technology investments and use case adoption. The 
UAE announced that by 2021, 50 percent of the government’s transactions will be achieved 
through a blockchain, thus saving time and resources. For example, Dubai expects to unlock 5.5 
billion dirhams in savings annually in document processing alone.

The initial leap was taken by the Dubai Department of Finance, which recently launched a 
blockchain-powered payment system intended to provide a more accurate and transparent 
governance process, as well as to enable real-time payments within and between government 
structures.

The Dubai Blockchain Initiative is a strategy that will help Dubai achieve the vision of H.H. 
Sheikh Mohammed bin Rashid Al Maktoum, who stated, “Dubai [will be] the first city fully 
powered by Blockchain by 2020 and make Dubai the ‘happiest city on earth (https://inter-
estingengineering.com/smart- city- dubai- the- happiest- city- of- the- future). The 
Dubai Blockchain Initiative strategy will use three strategic pillars: government efficiency, 
industry creation, and international leadership.

To find out more on the Dubai Blockchain Initiative, visit https://smartdubai.ae/initia-
tives/blockchain.

Country of Georgia
The country of Georgia has an interesting use case that involved its National Agency of Public 
Registry (NAPR). The NAPR was an early adopter of Hyperledger and piloted a blockchain- 
based land-titling registry in February 2016. (Recall that Ethereum and Hyperledger were barely 
released in 2016.)



HEalTHcarE USE caSES | 253

This proof of concept (POC) was impressive since they were the leaders in blockchain adop-
tion for enterprises before enterprise blockchains were even in the field. The blockchain was 
deployed as a private blockchain, as expected with Hyperledger, and was effectively “off- 
chained” to the Bitcoin blockchain. They accomplished this by using a distributed digital times-
tamp to validate and sign a document that contained citizen information and ownership of land.

A user would log in to a web-based application and initiate a request. The backend, being the 
blockchain-based network, would deploy a smart contract and execute accordingly.

The country of Georgia states that the following are the most essential characteristics of their 
blockchain registry:

 ◆ Overall system transparency

 ◆ Fault tolerance

 ◆ Intelligibility for end users

Based on the articles that have been posted about this project, it appears that all these charac-
teristics have been realized.

The main benefits are convenience and cost. More critically, however, the added level of 
security as a result of using hashing reduces risk and provides greater security.

To find out more about NAPR, visit https://exonum.com/story-georgia.

Healthcare Use Cases
Healthcare can be complex and challenging with compliance issues such as having to meet strict 
privacy data requirements. Patient data is generally held across multiple different institutions 
which have been traditionally in a legacy application silo. This means that the health network is 
closed and not well integrated with open systems. The historical use of different standards poses 
challenges for interoperability and sharing of medical data effectively.

Another challenge is the traditionally poorly implemented IT security of the medical commu-
nity in general. Blockchains can help to facilitate strict compliance requirements around data 
integrity and privacy and to enable standards.

Enabling encryption with a blockchain through the use of standards such as SHA 256 or ECC 
can facilitate compliance around a more secure approach to patient data. Companies in the 
United States, for example, can pay a significant cost for mishandling patient data—not just in 
fines but in company image.

Perhaps the most convincing example of a medical data exchange platform enabled by 
blockchain is Medicalchain. Medicalchain uses blockchain technology to securely store patient 
health records. Medicalchain maintains a single version of what is considered the medical truth, 
which is the original medical data. This medical truth is maintained on a blockchain ledger, and 
participating health organizations can request permission to access medical records.

What I find really interesting is that Medicalchain implements both Ethereum and 
Hyperledger Fabric. The use of a dual blockchain structure is nothing new, but Medicalchain’s 
implementation cleverly applies both the requirements and use cases you would expect for both 
blockchains.

The first blockchain layer controls access to health records and is built using Hyperledger 
Fabric (permissioned). The second blockchain is powered by an ERC20 token on Ethereum and 
underlies all the applications and services for the Medicalchain platform (permissionless).



254 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

Figure 8.5 shows the object storage on the Medicalchain blockchain. A clear hashing algorithm 
is used to facilitate the secure storage of the medical chain information. Data is actually verified 
by the hashes, and these hashes must match exactly to validate against the user request.

To find out more about Medicalchain, visit https://medicalchain.com/en/.

Other Potential Use Cases
Blockchains are known to be a great solution for specific industry segments, but we must realize 
they have use cases beyond the common use cases around logistics, financial, and data exchange 
and can extend to other industry use cases. Some of the use cases could be for identity validation, 
data storage, and charity. I will cover just a few of the hundreds of use cases that have been 
released in the last few years.

Zero-Knowledge Proofs
The application of zero-knowledge proofs (ZKPs) to blockchains is another area that could be 
utilized by numerous industries. ZKPs enable users to confirm something without revealing the 
actual details behind it. Essentially, a user could use the Ethereum blockchain and have a totally 
private transaction.

ZKPs are one area that major blockchains are taking seriously due to the demand for additional 
privacy-focused features. Ethereum, for example, has some interesting developments on the road 
map, such as the Aztec Protocol, which would enable ZKPs on the public Ethereum blockchain.

NOTE “Being able to answer a question of ‘Does a user have enough money to send to another user’ 
without knowing who the user is, or exactly how much they have, is one of the primary use cases for 
zero-knowledge proofs in blockchain.” —Demiro Massessi

Even private chains have begun partnering with projects like Zcash to better understand 
applications for ZKPs to their blockchain solutions. Enterprise blockchains will have components 
or features that will support this. Hyperledger announced support of ZKPs in upcoming releases.

Secure Data Storage

Data Object Encrypted
and Stored in Secure Data Store Hashing Algorithm

Hash of Object Stored
on Ledger

Hash on Ledger and Hash
of Stored Object Compared

Data Object Called
from Storage and Unencrypted

If Hashes Match Data is
Served to User

Input Data Object

Original Data
Object Ox e3bOc4

Stored Object

LedgerStored
Object

Hash
Comparison

Flagged if
Compromised

Verified Data Sent
To Requester

Figure 8.5 
Medicalchain data



oTHEr poTEnTIal USE caSES | 255

ZKPs provide the following benefits:

 ◆ Enable private transactions

 ◆ Reduce blockchain size

 ◆ Provide scalability

 ◆ Enable cross-asset interoperability

ZKPs are a growing area of interest, and there are a significant number of projects being 
announced in this area.

NOTE “We’re changing the world one blockchain at a time, and if we use this technology properly, 
we’re bound to make the world a better place for everyone.” —George levy, cSBcp, cBp

Social Impact, Charity, and Fundraising
Blockchains can provide a transparent and auditable trail for donations in order to prevent 
fraudulent activity. Governments could use this information to easily identity transactions and 
therefore give appropriate credits.

The world of social impact (or social good, as it is also known) is clearly a growing area for 
blockchain use cases. For example, platforms can incentivize social organizations to run projects 
in a transparent way and get paid for achieving their goals. The blockchain solutions can reduce 
the requirements for financial and legal intermediaries, which are generally costly and prone 
to mistakes.

One of the more interesting use cases of social impact is called Alice (https://alice.si/). 
Alice allows for complete transparency for each funding project and makes it publicly available 
on the Ethereum blockchain. This allows for immediate transparency but also provides action-
able historical insight into what funding projects are working.

Distributed Cloud Storage
Improvements in data security stem from a shift from a centralized means of storage to a 
decentralized one. Instead of going to AWS, Azure, or GCP for cloud storage, perhaps you can 
just use a peer-to-peer approach.

One of the more interesting cloud storage plays is called Storj. The Storj cloud platform lets 
users rent storage from their peers on the network. All network transactions are conducted in 
Storj’s crypto asset, which is also called Storj and uses a token launched on the Ethereum 
blockchain.

According to the website, storing 1 GB on the Storj network costs $0.015 per month on 
average. This is far below the current cloud industry standard for cloud object storage.

For more information on the Storj storage platform, see https://storj.io/index.html. For 
more information on the Storj cryptocurrency on the Ethereum platform, see https://www.
coingecko.com/en/coins/storj.

Identity Management
Identity verification in the world of KYC/AML provides a new dimension to security, removing 
verification bottlenecks and providing more accurate results.



256 | CHAPTER 8 EnTErprISE BlockcHaIn USE caSES

One interesting use case of identity management is about Civic’s Secure Identity Platform 
(SIP). This Secure Identity Platform is designed specifically for multifactor authentication 
without the need for passwords or usernames. SIP relies on the user’s biometric information, 
which is verified by the blockchain ledger.

For more information about the Civic blockchain, see https://www.civic.com/.

Summary
This chapter covered several industry verticals, such as the financial, healthcare, and logistics 
industries. Blockchain adoption is also clearly taking on new heights in other industry verticals. 
One of the main thoughts before adopting any blockchain is to search for the latest blockchain 
use cases. IBM, Hyperledger, and Corda release updated use cases about their solutions fairly 
routinely. The available number of blockchain use cases is ever expanding, so I encourage you to 
either attend a conference or do some online research.

There are business and technical merits of blockchain technologies. The innovations around 
blockchain are clearly expanding the portfolio of solutions for enterprises and addressing both 
the technical and business challenges that enterprises have traditionally dealt with around 
legacy IT.

Common use cases for the financial sector include KYC, cross-border payments, and tokeniza-
tion. Other possible use cases are around compliance and customs documentation.

Governments such as the City/State of Dubai are at the forefront of blockchain road maps for 
government. The country of Georgia was an early adopter of blockchain even before the release 
of enterprise blockchains such as Hyperledger and Ethereum.

There are numerous other use cases for blockchain, including identity management, zero- 
knowledge proofs, cloud storage, and charity.



Chapter 9

Blockchains can be an ideal platform for regulatory compliance because they establish a histori-
cally trusted audit trail that can be verified in real time.

Blockchains create comprehensive log data that can be used for audits and compliance. Audit 
trails are critical to maintain in most compliance requirements for businesses located anywhere. 
Blockchains are starting to take on additional use cases and a role in the compliance world. For 
example, blockchains will play the following critical roles:

 ◆ Blockchains enable enterprises to operate lawfully in a dynamic and changing regulatory 
environment.

 ◆ Blockchains have the potential to change the way investigations and audits are completed.

 ◆ Blockchains can provide transparency, which can be implemented in several ways.

Compliance requirements can range from a country-based requirement, such as the Australia 
Privacy Amendment, to a publicly traded U.S.-based company where SOX will be required. Any 
enterprises that use the payment networks for credit card transactions are required to follow 
PCI-DSS. Some companies may choose a more voluntary compliance baseline, such as ISO.

This chapter focuses primarily on enterprise concerns for common enterprise blockchains, 
including the smart contracts that can be used to maintain personal data. I briefly cover some 
aspects around cryptocurrency, but that won’t be the primary focus. I also discuss the most 
common compliance regulations. These regulations often address security and privacy together.

Governance, Risk, and Compliance
Historically, compliance requirements for enterprises focused both on common concerns, such as 
privacy, and on more specialized concerns, such as requirements for healthcare, credit cards, and 
government-mandated requirements.

Blockchain technology brings new challenges but also new opportunities to enterprises 
around compliance. However, not all compliance requirements can be met with blockchain 
technology. For example, permissioned blockchains generally enable compliance, whereas 
permissionless blockchains generally do not enable compliance.

No matter what business you are in, chances are you will need to address compliance. Those 
audit logs could be kept on a blockchain. This is where there are plenty of growth opportunities 

Blockchain Governance, Risk, and 
Compliance (GRC), Privacy, and 
Legal Concerns

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



258 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

in the market. Whether a blockchain solution makes sense or not is going to require more 
investigation on your part. The reality is that blockchain technology is not a one-size-fits-all 
solution and your challenges may vary.

Blockchain services can certainly have a major impact on governance, risk, and compliance 
(GCR) functions, which include the following key areas of the business:

 ◆ IT governance

 ◆ Corporate and IT audits

 ◆ Policy management and regulatory change management

 ◆ Risk and compliance

 ◆ Enterprise risk management

 ◆ Data protection and privacy

 ◆ Contracting agreements

 ◆ Third-party risk management

 ◆ Smart contracts

 ◆ Supply chains and logistics

 ◆ Proof of provenance

As a blockchain architect, you will likely run into several concerns around the General Data 
Protection Regulation (GDPR), the Health Insurance Portability and Accountability Act of 1996 
(HIPAA), the Sarbanes-Oxley Act of 2002 (SOX), Know Your Customer, anti-money-laundering 
(AML) rules, and so on. For example, blockchain ledgers don’t merely track compliance; they 
also streamline enforcement requirements, discourage fraudulent behavior, and provide valuable 
insight into how the platform is meeting requirements.

It’s critical that an enterprise’s governance structure provide directives to safeguard its IT 
assets and data. Because blockchains are ledgers, they maintain data that requires compliance in 
many situations. Blockchain applications that interface with consumers require extra caution to 
maintain the various facets that your company may very well be legally bound to maintain, 
such as GDPR.

Compliance Benefits
Meeting compliance requirements can have some benefits for the enterprise as well as for the 
user base and customers. Common blockchain features that enable compliance include the 
following:

 ◆ A tamperproof record of immutable, fully auditable data

 ◆ Transparency to users and monitoring tools

 ◆ The monitoring of the reliability of services and the quality of data



Governance, risk, and compliance | 259

Regulatory Oversight
Blockchains such as Bitcoin, Litecoin, Ethereum, and numerous others originally did not have any 
regulatory requirements, at least in the United States. There has been a bit of discussion on 
whether a cryptocurrency is considered to be a security or a commodity in regard to how they will 
be regulated. Bitcoin, for example, has been treated by most countries as an asset, not an invest-
ment vehicle or security. However, this could change in most western nations in the coming years.

Determining whether a cryptocurrency is a security depends on the circumstances under which it 
is sold. The question is whether the Securities and Exchange Commission (SEC) maintains oversight.

Blockchain Characteristics
As with any technology, there are characteristics, features, and challenges to understand, and 
blockchains are no different. Indeed, they can be more complex, depending on the requirements 
you need to meet.

Before reviewing your compliance requirements, it is important to review how blockchains 
are defined and the properties they generally maintain.

 ◆ Transparency—All participants can view all data recorded.

 ◆ Decentralization—Several copies of the blockchain coexist on different computers.

 ◆ Immutability—Once data is recorded, it cannot be altered or removed.

 ◆ Disintermediation—All decisions are made by consensus between the participants, 
without a centralized point of control or arbitrator.

When it comes to compliance for blockchains, all the properties listed could provide for 
mandated compliance regulations in an efficient manner.

Initial Coin Offerings
An initial coin offering (ICO) is where the holder of the cryptocurrency has a set of contractual 
interests and financial interests in the enterprise offering. An ICO is similar in some respects to 
an initial public offering (IPO) in the stock-trading world.

Depending on the structure of an ICO, that ICO could be under the Securities and Exchange 
Commission (SEC) regulations, which maintains an interest in oversight over the investment 
securities in the United States.

This chapter focuses on the regulatory concerns that enterprises have around compliance 
enterprises. I won’t be getting into details of ICOs, such as funding, launching, and legal 
concerns. ICOs are a specialized area and generally not a concern for enterprises deploying 
Hyperledger, Corda, or even Ethereum applications.

The Howey Test
The SEC’s view of Ethereum’s Ether token hinges on whether presales of the cryptocurrency by 
an initial coin offering constitutes an enterprise having a degree of influence over its value. 
However, the SEC has declared that Ether is not a security and doesn’t fall under the agency’s 
oversight. Essentially, Ethereum is viewed as a commodity due to how its presales are handled.

The SEC’s determination is based on the precedent set by the Supreme Court’s decision in 
Securities and Exchange Commission v. W. J. Howey Co., a case that led to what has become known 
as the Howey test. By definition, ICOs are securities because they pass the Howey test.



260 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

The W. J. Howey Co. owned citrus groves in Florida, the fruits from which were considered a 
commodity when sold on an exchange. However, the company also leased their citrus groves, 
and the Supreme Court ruled that these lease contracts were considered to be a security or 
investment contract, not a commodity.

In a nutshell, the Howey test determines whether a financial transaction qualifies as an 
investment contract and thus would be a security and subject to special regulations.

For more information on the Howey test, refer to https://consumer.findlaw.com/
securities-  law/what-  is-  the-  howey-  test.html.

When deploying a blockchain, whether for a cryptocurrency or a payment gateway, it would 
be wise to clearly understand how the blockchain services are procured due to possible regula-
tory concerns.

Personally Identifying Information (PII)
Personally identifying information (PII) is personal information that can be used to uniquely 
identify, contact, or locate a single person in the United States. In the European Union (EU), PII is 
referred to as personal data.

The detailed requirements between the two are slightly different. For example, in the 
European Union, cookies are considered personal information, but in the United States, cookies 
are actually considered non-PII tracking information and not subject to any PII regulations.

A more detailed explanation of PII is from the National Institute of Standards and Technology 
(NIST), and provides the following definition:

PII is any information about an individual maintained by an agency, including (1) any information that 
can be used to distinguish or trace an individual‘s identity, such as name, social security number, date 
and place of birth, mother‘s maiden name, or biometric records; and (2) any other information that is 
linked or linkable to an individual, such as medical, educational, financial, and employment information. 
(Prindle & Loos. “Information Ethics and Academic Libraries: Data Privacy in the Era of Big Data.” 
Journal of Information Ethics 26:2, p. 22.)

For more information on the NIST definition of PII, refer to https://csrc.nist.gov/
publications/detail/sp/800-  122/final.

When it comes to protecting personal data, the following common identifiers are generally 
considered to provide a crucial part in identities:

 ◆ Full name

 ◆ Home address

 ◆ Email address

 ◆ Social Security number (SSN)

 ◆ Passport number

 ◆ Driver’s license number

 ◆ Date of birth (DOB)

 ◆ Telephone number

 ◆ Audit trails

 ◆ Credit and debit cards



Governance, risk, and compliance | 261

Personal data—such as customer or employee names, addresses, dates of births, and other 
identifying information—may very well be located on your enterprise blockchain ledgers, so 
protect it accordingly.

Historically, identification of PII data was discovered through the process of an audit. When 
performing an audit, it is important to realize that a blockchain may contain two categories of 
personal identifiable data.

 ◆ Participants and identifier—for example, each participant/miner has a public key that 
identifies the issuer and receiver of a transaction

 ◆ Additional data contained within a transaction, such as names, addresses, phone num-
bers, DOB, SSN, and so on

In the United States, non-PII data is information that cannot be used on its own to trace, or 
even identify, a person. Examples of non-PII data include the following:

 ◆ Device IDs

 ◆ IP addresses

 ◆ Browser cookies

 ◆ Monitoring information

Blockchains are ideal for most compliance requirements and can provide a historical audit 
trail of PII data.

Common Compliance Requirements
Compliance requirements vary depending on the location of your data storage, blockchain 
nodes, user and employee locations, and even industry verticals. This section covers the most 
common compliance areas that global enterprises would likely be required to consider, including 
how these requirements can affect a blockchain solution.

Information about common compliance requirements—such as GDPR and PCI—is readily 
available, so expertise should be relatively easy to locate. Other, more regionalized require-
ments—such as the Australia’s Privacy Amendment (Notifiable Data Breaches) Act 2017, or the 
United Kingdom’s Data Protection Act 2018—are more specialized due to the limited audience.

A best practice for compliance requirements is to discuss them with your corporate counsel. 
Your corporate counsel should be able to understand the ramifications of different compliance 
requirements and translate them in a manner that corporate risk reduces or eliminates.

Blockchains pose some new challenges not only technically but also from a business perspec-
tive. These challenges include legal concerns such as liability, legal prose structuring, resolving 
disputes and arbitration, jurisdiction, and data privacy, just to name a few.

Privacy Act 1988 (Australia)
The Privacy Act 1988 (Privacy Act) was introduced to ensure the maintenance of privacy of individu-
als as well as to regulate how Australian government agencies handle privacy-related information.

The Privacy Act specifically includes 13 Australian Privacy Principles (APPs). These APPs 
apply to some private sector organizations as well as most Australian government agencies. 
These mandated organizations are collectively referred to as APP entities.

To find out more about the Privacy Act, visit https://www.oaic.gov.au/privacy/
the-privacy-act/.



262 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

Basel II
Basel II is a global compliance requirement that is relevant for large, international banking and 
financially driven organizations. This regulation was actually named after where the meetings 
for this regulation took place in Switzerland. The Basel accords (agreements) are a series of 
recommendations on banking laws and regulations issued by the Basel Committee on Banking 
Supervision (BCBS).

The main goal of these regulations is to seek protection against financial and operational risks 
faced by the banking industry—specifically in terms of internal and external fraud from unau-
thorized activity, theft, and system security incidents, such as theft of information.

The following are the three essential features of Basel II:

 ◆ Mandates that capital allocations by institutional managers are more risk sensitive than 
previous allocations that did not assess risks

 ◆ Separates credit risks from operational risks and quantifies both

 ◆ Reduces the scope or possibility of regulatory arbitrage by attempting to align the real or 
economic risk precisely with regulatory assessment

The Basel III standard was announced in December 2017, and takes effect in January 2022. The 
new Basel III framework ensures that banks must split deposits from corporate clients into two 
specific buckets, which are the operating and the nonoperating buckets.

From a blockchain perspective, this Basel III compliance requirement perhaps has the least 
activity from what I have experienced and seen. Generally, banks are still using older technolo-
gies such as mainframes and older platforms such as SWIFT for a significant part of their 
data-based services. In reality, deploying enterprise blockchains will not be a one-night event or 
even a one-year event due to the complexity, integration, and costs associated with changes with 
burdensome enterprise and financial requirements.

Clearly, there are benefits of blockchain from a regulatory perspective. For example, using a 
blockchain would enable the regulators to oversee the processes, as all the steps are easily 
traceable on the blockchain ledger. Blockchains could provide the required highly structured, 
well-defined, and complete risk data reporting requirements of Basel II.

Data Protection Act 2018 (United Kingdom)
The Data Protection Act 2018 (DPA), the third generation of the act, modernizes data protection 
laws in the United Kingdom to ensure they are effective in the years to come. It has some 
similarities to GDPR but overall is far wider. The act supplements the European Union’s General 
Data Protection Regulation but also incorporates it into UK law.

The act states that a child can provide consent for the purposes of the GDPR from the age of 
13, which is used as the default age for consent.

The act also covers the intelligence services and law enforcement domains that are required to 
comply with data protection standards. The DPA also has provisions for data subject rights and 
special categories.

To find out more about the Data Protection Act, refer to http://www.legislation.gov.uk/
ukpga/2018/12/contents/enacted.



Governance, risk, and compliance | 263

General Data Protection Regulation (European Union)
The European Union’s General Data Protection Regulation (GDPR) was implemented in May 2018, 
and is now being fully enforced. GDPR affects all organizations and businesses anywhere in the 
world in the sense that if you handle EU customers as a company whether or not you’re located 
there, you are required to specifically address the process of handling personal data of EU citizens.

GDPR was proposed and released to attempt to structurally streamline, update, and simplify 
the EU’s data protection laws that are in effect. EU citizens theoretically have control over their 
data, and GDPR should simplify regulatory challenges between member states.

The main concern around privacy for citizens is the right to be forgotten (RTBF). Basically, a 
customer can contact you and request to be removed from your databases. This includes data 
types such as IP addresses, web cookies, physical addresses, genetic information, and 
phone numbers.

The right to be forgotten is a complex area when it comes to blockchain technology. 
Blockchains are not meant to be deleted or modified. They are immutable, and therefore they do 
not forget! For any blockchain network (permissioned or permissionless) that directly stores 
personal data in a block, the ability to comply with GDPR may be more challenging depending 
on the approach you are considering.

To address this concern appropriately, you need to identify the detailed data points that 
would be included in the regulatory requirements and then consider not placing those data 
points on the chain.

To do this, you would need to create an off-chain or a sidechain. Off-chains and sidechains are 
when the data is written and read from a centralized database not connected directly to the 
blockchain. Generally, sidechains or off-chains use centralized solutions or legacy solutions such 
as databases.

Figure 9.1 shows how a off-chain could be used with GDPR.

GDPR is essentially another book unto itself; therefore, I am touching only on areas that I 
believe are important to understand for blockchain-focused engagements. At the time of writing, 
there are 173 recitals and more than 100 articles. Recitals list what the legislation should achieve. 
Each member state also has supervisory authority and maintains its own offices.

Ledger

Off-Chain for GDPR Requirements

Ledger Customer Database
Supports (CRUD)

Ledger
Wallet

Ledger

EU Blockchain
User

Ledger Transactions

Ledger

Customer Requests Deletion of Personal Information

Dapp

Dapp Dapp

DappDapp

Node

Mining
Node

Mining
Node

Mining
Node

Mining
Node

Blockchain Network

Block
(CR)

Off-Chain

0, 1, 2, 3 = block + chain

Figure 9.1 
Using a side-
chain with Gdpr



264 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

Most of the regulations are fairly straightforward, and the principles are similar to previous 
regulations. The main differentiator is how the member states are brought together in a standard, 
formatted focus. The penalties for noncompliance could be significant, so you should engage 
your corporate counsel on proper legal structures.

To learn more about GDPR, visit https://eugdpr.org/.

Gramm-Leach-Bliley Act
The Gramm-Leach-Bliley Act (GLBA), also known as the Financial Services Modernization Act of 
1999, was signed into law by President Clinton. The act seeks to protect consumers’ financial 
privacy. Its provisions limit when a financial institution can disclose a consumer’s nonpublic 
personal information to nonaffiliated third parties.

GLBA compliance requires financial organizations to notify customers about how they share 
personal information and also notify their customers about the right to request that their data 
remains unavailable to unaffiliated third parties.

Financial institutions must comply with the Federal Trade Commission (FTC) standards for 
sharing and protecting the nonpublic personal information (NPI) of your customer base.

GLBA compliance mandates the following:

 ◆ The Financial Privacy Rule requires financial institutions to provide particular notices and 
to comply with certain limitations on disclosure of nonpublic personal information.

 ◆ The Safeguards Rule requires companies defined under the law as “financial institutions” 
to ensure the security and confidentiality of this type of information. The rule also states 
that financial institutions must create a written information security plan describing the 
program to protect their customers’ information.

 ◆ Pretexting codifies protections against the practice of obtaining personal information 
through false pretenses.

These regulatory requirement for the financial sector is nothing new. The new concern, 
though, is how to address blockchain around these compliance requirements.

Health Insurance Portability and Accountability Act of 1996
The Health Insurance Portability and Accountability Act of 1996 (HIPAA) sets national standards for 
protecting the confidentiality, integrity, and availability of electronically protected health informa-
tion. Compliance with the Security Rule was required as of April 20, 2005, and mandated for most 
health plans, and as of April 20, 2006, mandated for health plans with fewer than 1,000 members.

NOTE “Blockchain technology, or distributed ledger technology, is just a way of using the modern 
sciences of encryption to enable entities to share a common infrastructure for database retention.” 
—Blythe masters

A blockchain could actually protect patient data but also facilitate privacy by default for what 
HIPAA refers to as covered entities.



Governance, risk, and compliance | 265

These covered entities are as follows:

 ◆ Doctors, clinics, dentists, nursing homes, and even patient home services

 ◆ Organizations are defined by the law as normally the healthcare programs provided by 
employers, governmental agencies, and health maintenance

 ◆ Agencies that act as aggregators of information, such as clearinghouses

The HIPAA Security Rule requires appropriate administrative, physical, and technical 
safeguards. These safeguards are quite strict in nature and are to ensure the confidentiality, 
integrity, and security of protected patients’ health-related information.

The HIPAA Compliance Checklist that is available online has four main requirements.

 ◆ Ensure safeguards are in place to protect patient health information.

 ◆ Provide what is stated as reasonably limited use and sharing of protected health 
information.

 ◆ Validate organizations’ data sharing agreements that are in place with service providers 
that perform covered functions.

 ◆ Provide procedures to limit who can access patient health information and also training 
programs about how to protect patient health information.

Blockchain technology has significant potential to improve data interoperability, security, and 
privacy around numerous services, and healthcare is no exception, of course. Blockchains have 
been addressing multiple healthcare industry pain points by addressing data protection for 
health information exchanges, identifying varying data standards, and removing inconsistent 
rules and permissions.

Blockchain technology could also lower the number of HIPAA violations, which can be costly 
for an organization, thereby increasing privacy for patients while lowering costs for providers.

The use of blockchains in the healthcare industry is still in its infancy, although the number of 
platforms that support its use with HIPAA requirements is growing. That said, the level of 
interest is not as high as it is for logistics use cases.

Know Your Customer Compliance
Know Your Customer (KYC) compliance in the financial sector generally involves repetitive 
tasks. Prior to blockchains, these tasks were performed manually and were riddled with data 
inconsistencies and duplicate processes. Furthermore, different banks had different systems, 
which added to the challenges.

According to OPUS, a KYC provider, major financial institutions report spending up to $500 
million each year on KYC and customer due diligence (see https://www.opus.com/
future-of-kyc/).

The penalties for KYC and AML noncompliance violations can be financially burdensome for 
some organizations. A distributed ledger, however, can provide an opportunity to act as a root of 
trust that is both immutable and cost efficient.

Figure 9.2 shows how a KYC solution could be used with a blockchain solution. Blockchain 
nodes could be used as the source for the immutable ledger and be connected to a KYC service as 
a compliance node to provide oversight.



266 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

A blockchain solution, especially when implemented in a consortium approach, could clearly 
provide some stability, cost, and time efficiencies, as well as an increase in customer satisfaction. 
Imagine taking a process that took days and getting it down to seconds, removing redundancy 
and providing cost efficiencies.

A blockchain solution can enable regulators to oversee the start-to-finish processes of KYC 
due to all steps being fully traceable on the blockchain.

AML is a significant regulatory requirement that is a layer of compliance that financial 
institutions must both adhere to and spend large amounts of money to maintain.

For example, according to a survey by Lexis Nexus, firms with less than US$1 billion in assets 
averaged some US$850,000 in AML operational costs. Mid-tier firms averaged US$7.4 million, 
and top-tier firms with more than US$100 billion in assets spend an average of US$15.8 million 
on AML compliance annually. For more information, visit https://risk.lexisnexis.com/
about-us/press-room/press-release/20181010-true-cost-aml.

AML compliance monitoring is used to ensure the integrity of the data and involves continu-
ous screening of clients’ personal and transaction information. Blockchain ledgers using smart 
contracts could provide some use cases for using blockchain technology.

Blockchains have huge potential because of their ability to prevent actions if certain prede-
fined conditions in the smart contract are met. A blockchain deployment would identify the risks 
around the three defined stages in money laundering: placement, layering, and integration.

 ◆ Placement is the movement of cash from its source. This could be accomplished through 
any number of means such as smuggling, asset purchases, security brokers, and numerous 
other financial vehicles.

 ◆ Layering is the stage that money launderers use to attempt to make it more difficult to 
detect and uncover a money laundering activity. Layering is intentionally meant to make 
illegal gains and proceeds difficult for the law enforcement agencies to detect. This is when 
cash is converted into other forms such as stocks, bonds, cryptocurrencies, and so on.

Customer Applies
Customer Approved

Customer Bank

Authorization Sent

Quorum Tx
Mgr

Request Sent

Blockchain Nodes

Compliance
Node

KYC
Service

KYC Database

Documents Processed

Records to Blockchain

Private
Ledger

Public
Ledger

Quorum
Node

Quorum
Node

Know Your Customer

KYC is the process of a business identifying and
verifying its potential clients.

Figure 9.2 
kyc blockchain solution



Governance, risk, and compliance | 267

 ◆ Integration is when the money that is laundered is now in the actual economy and looks as if it 
were gained through normal business means. For example, a cartel in Mexico owns a resort 
hotel and presents more cash than what even the highest room rates could account for. Cash is 
actually deposited and funneled through the banking system from a legitimate source.

A blockchain could be implemented to manage limits that could be specified, such as capital 
and liquidity, or to enforce restrictions. A similar blockchain structure as referenced in the KYC 
section could be implemented since it’s common to have both KYC and AML solutions inte-
grated at some institutions.

Figure 9.3 shows how a KYC/AML framework solution could be used with a blockchain 
solution. Blockchain nodes could be used as the source for the immutable ledger and be con-
nected to a KYC service as a compliance node to provide oversight. AML services would be used 
to assess, analyze, and detect suspicious transactions.

International Organization for Standardization 27001
ISO 27001 is a highly sought-after regulation and part of the ISO/IEC 27000 family of standards. 
Like most security standards, its purpose is to help organizations maintain the security of their 
data. The 27000 family includes more than a dozen individual standards covering informa-
tion security.

ISO standards differ from most other compliance requirements, in the sense that ISO is a 
voluntary compliance bucket. Organizations choose ISO compliance for several reasons, includ-
ing the following:

 ◆ To avoid breaches

 ◆ To ensure customer acceptance and assurance

 ◆ To avoid fines

 ◆ To gain a market edge

Customer Applies
Customer Approved

Customer Bank

Know Your Customer and AML

Authorization Sent

Quorum Tx
Mgr

Request Sent

Blockchain Nodes

KYC is the process of a business identifying and verifying the identity
of its potential clients. AML is the framework used to analyze transactions.

Compliance
Node

KYC
Service

KYC Database

Documents Processed

Records to Blockchain

Private
Ledger

AML
Software

AML
Stage

Analysis

AML
Detection

AML Framework

Public
Ledger

Quorum
Node

Quorum
Node

Figure 9.3 
kyc and 
aml framework



268 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

ISO certification is quite expensive. Organizations can invest millions to be compliant.
ISO compliance requires maintenance of log files. Log files are essentially going to lead to 

audit trails and audits, which is where a blockchain solution could come into play to maintain 
ISO compliance.

Sarbanes-Oxley Act of 2002
The Sarbanes-Oxley Act of 2002 (SOX) was enacted by the U.S. Senate as the “Public Company 
Accounting Reform and Investor Protection Act” and by the House of Representatives as the 
“Corporate and Auditing Accountability and Responsibility Act.”

SOX was specifically designed with the goal of implementing accounting and disclosure 
requirements. These requirements increase transparency in corporate governance and financial 
reporting and formalize a system of internal checks and balances that are applicable in several 
situations.

SOX is applicable in the following circumstances:

 ◆ Compliance is required by all publicly held American companies.

 ◆ Compliance is required by any international companies that have registered equity or debt 
securities with the U.S. Securities and Exchange Commission (SEC).

 ◆ Compliance is required by any accounting firms and third-party organizations that 
provide financial services.

As you can see, the capture “net” for SOX compliance is both far and wide. SOX compliance is 
just one of the several compliance requirements that a multinational corporation expects to 
deal with.

SOX internal controls are critical to understand. A thorough review of internal controls 
comprises one of the largest components of a SOX compliance audit. The four SOX internal 
controls are as follows:

 ◆ Access

 ◆ Security

 ◆ Change management

 ◆ Backup and recovery

SOX is complex and has many moving targets around it. Your IT management should hire or 
train the appropriate personnel around SOX because of the significant liability around a SOX 
audit. Blockchain could provide some important insight into how SOX audits are handled.

Federal Information Security Management Act of 2014
If you’re a government contractor in the IT realm or working around government IT, whether in 
the military, intelligence, or civilian sectors, then you are more than likely familiar with the 
Federal Information Security Management Act (FISMA).

The U.S. federal government needs to maintain control. To be fair, it’s clearly needed for their 
IT systems, as history has proven from systems being compromised. Before FISMA there were no 
standards in most cases even from an agency perspective with the exception of the Department 
of Defense (DOD).



Governance, risk, and compliance | 269

Under FISMA, if your organization wants to deploy a new IT solution, such as a data storage 
array or a database server farm, it needs to go through a security authorization process for those 
services. The same process is true for a blockchain solution to be used in a production environ-
ment and handling live data and customers online.

FISMA requires agencies to meet stringent federal security requirements. Federal information 
systems must go through a complete Security Authorization (SA) process before being granted 
an authorization to operate (ATO), and blockchain systems are no exception.

The security authorization process uses a Risk Management Framework as defined by the 
National Institute of Standards and Technology (NIST), an agency under the Department 
of Commerce.

The NIST SP 800-37 certification and accreditation process consists of the following phases:

 ◆ Initiation—Ensures that the authorizing official and senior agency information security 
officer agree with the contents of the system security plan

 ◆ Security certification—Determines the extent to which the security controls in the 
information system are implemented correctly, operating as intended, and producing the 
desired outcome

 ◆ Security accreditation—Determines whether the remaining known vulnerabilities in the 
information system pose an acceptable level of risk to agency operations, agency assets, or 
individuals

 ◆ Continuous monitoring—Provides oversight and monitoring of the system controls in the 
information system on an ongoing basis, and informs the authorizing official when 
changes occur

The security authorizations reference the Risk Management Framework. It provides a process 
that integrates security and risk management activities into the system development lifecycle. 
The risk-based approach to security control selection and specification considers effectiveness, 
efficiency, and constraints due to applicable laws, directives, executive orders, policies, stand-
ards, or regulations.

The Risk Management Framework is outside the scope of this book. The full NIST Special 
Publication is available at https://csrc.nist.gov/publications/detail/sp/800-37/
rev-1/final.

NOTE nisT’s mission is to promote innovation and industrial competitiveness by advancing meas-
urement science, standards, and technology in ways that enhance economic security and improve our 
quality of life.

When you are specifying a blockchain project for a federal government customer, it’s impor-
tant that you understand the NIST frameworks. You would want to apply a blockchain solution 
in the same way that you assess a new database server.

The following are some of the considerations you need to understand:

 ◆ Type of blockchain deployment, such as permissioned, hybrid, or permissionless

 ◆ Vendor support of access controls, security, audits, and so on

 ◆ Client applications and how authentication and authorization (AA) is applied



270 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

 ◆ Deployment of your enterprise nodes geographically

 ◆ Data storage on nodes, cloud storage, and so on

 ◆ Audit logging and monitoring services

 ◆ Off-chain services that connect to the blockchain such as compliance or cur-
rency exchange

 ◆ Transaction handling and monitoring

 ◆ Security assessments handling

 ◆ Code updates and smart contract updates

 ◆ Consistent maintenance of ledger data

 ◆ Managing your encryption keys

 ◆ Identification of security clearance classification requirements

 ◆ Procurement processes for blockchains

 ◆ Business continuity/disaster recovery

There are many other items to consider. It’s not uncommon to have a detailed checklist of 
more than 100 areas of discovery but also presentation of blockchain design considerations 
around the risk management framework.

FISMA has an excellent compliance model that could be used to mitigate your federal 
government agency risks. Figure 9.4 shows the FISMA compliance model. FISMA is a fairly 
robust but also specialized area. For more information, refer to https://www.dhs.gov/cisa/
federal-  information-  security-  modernization-  act.

Finally, the American Council for Technology and Industry Advisory Council (ACT-IAC) has 
an excellent resource called the Blockchain Playbook, which is recommended for any government 
integrator or government agency. For more information, visit https://www.actiac.org/
knowledge-bank.

FISMA Legislation

Federal Information Processing Standards (FIPS)

Management, Technical, and Operational Controls

Security Controls and Settings

FIPS 199
FIPS 200

Figure 9.4 
Fisma high-
level process



smarT conTracT leGal concerns | 271

Payment Card Industry Data Security Standard
Transactions between two accounts at the same acquiring bank can be maintained easily due to 
the internal protocols being the same. The real challenge around compliance is getting the 
networked applications at two different banks to communicate securely and effectively. This 
historically is a complicated and expensive process to achieve PCI compliance between dispa-
rate systems.

Integration of blockchain technology can help with the challenge of disparate systems. By 
using a tailored version of blockchain, the whole process of bank-to-bank and merchant-to-bank 
communication can be sped up safely and securely. The benefits realized would be significantly 
less manual processing, enhanced data security, and effectively reduced costs to merchants.

The Payment Card Industry Data Security Standard (PCI DSS) applies to organizations of any 
size that accept, transmit, or store any cardholder data. Organizations can have different “levels” 
of compliance depending on the size of their transactions.

 ◆ Level 1: Merchants processing more than 6 million card transactions per year

 ◆ Level 2: Merchants processing 1 to 6 million transactions per year

 ◆ Level 3: Merchants handling 20,000 to 1 million transactions per year

 ◆ Level 4: Merchants handling fewer than 20,000 transactions per year

However, regardless of their compliance level, organizations need to comply with the same 
major requirements. PCI DSS specifies six major requirements on compliance.

 ◆ Build and maintain a secure network

 ◆ Protect cardholder data

 ◆ Maintain a vulnerability management program

 ◆ Implement strong access-control measures

 ◆ Regularly monitor and test networks

 ◆ Maintain an information security policy

The solution to this challenge can certainly rest in the consortium model where the blockchain 
services are maintained properly.

PCI-DSS compliance is complex, so proper planning and investments are required. Note that 
there is currently no direction from the PCI organization on blockchain acceptance or guidance 
around payment gateways—for example, where a credit card could be used to purchase 
cryptocurrencies.

In summary, companies that are global must be aware of major regional data privacy legisla-
tion and protect themselves accordingly. It is imperative that data security and privacy profes-
sionals assess their environments and ensure that if they do business or employ someone from 
the EU, GDPR will apply to their organizations.

Smart Contract Legal Concerns
Legal concerns include jurisdiction, liability, privacy, and enforcement. Financial institutions will 
likely have additional concerns, such as addressing blockchain-based legal prose or interbank 



272 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

transfers via a consortium blockchain. Legal prose is enforced through the implementation of 
smart contracts.

The Uniform Commercial Code (UCC) can play a significant role in how states handle smart 
contract disputes and provide legal relief. Smart contract legal prose should be considered when 
using smart contracts.

Smart Contract Enforcement
Smart contracts are computer code, and by definition their use may present enforceability 
questions using methods employed with traditional contracts. Basically, the input parameters 
and the execution steps for a smart contract need to be specific and direct. If “this” occurs, then 
execute “that” (the next step). Or if “Sally pays $100,” then “ship furniture.” On the other hand, if 
Sally does not send $100, then the smart contract does not proceed. Smart contracts act like a 
trigger, which in the world of web programming could be considered a webhook.

At the time of writing, there is no specific federal contract law in the United States dealing 
with smart contracts. Generally, the enforceability and interpretation of smart contracts are 
determined at the state level, which varies widely. However, when it comes to disputes, most 
states rely on their interpretation of the Uniform Commercial Code (UCC).

At the federal level, contracts must be in writing and additional formalities may be required, 
such as those under the UCC, to establish legal viability. This presents some legal challenges to 
understand exactly how smart contracts are applied to both state and federal contract laws. This 
complexity can also present challenges to which jurisdictions handle these smart contracts.

The UCC has been adopted by all 50 states, although each state has its own variations. In 
addition to the UCC, there may be distinct state-level fraud statutes to consider. Therefore, it 
would be important to consult with corporate counsel on how to address smart contract 
enforcement.

Currently there are no specific UCC regulations regarding blockchain smart contracts. 
However, this is changing slowly with federal state or local laws in the United States dealing 
with smart contracts. Smart contracts differ from electronic contracts in that electronic contracts 
have legal language clearly defined and the signers electronically sign the contract, whereas 
smart contracts are built in a programming language and not signed directly by participat-
ing parties.

Countries such as Switzerland, Dubai, and Germany are significantly ahead of the United 
States in their smart contract laws. In the United States, smart contracts should include a dispute 
resolution provision with clearly defined terms accepted by both parties. Your enterprise’s 
corporate counsel really needs to be involved in smart contract law.

Traditional contracts follow what are considered by the legal community as “elements of a 
contract” to provide for the contract’s legal enforcement and validity. Most legal scholars and 
prominent law firms agree that smart contracts should follow these “elements” as well to 
provide for relative assurance that the smart contract is “enforceable.”

To determine whether a smart contract can be a legally enforceable contract, customers must 
consider whether each of the elements necessary for a legally binding contract is actually met 
through the implementation and deployment of the smart contract. According to the UCC, “To 
create a legally enforceable contract under US law, two or more parties must demonstrate that an 
offer was made and accepted through a meeting of the minds and accompanied by an exchange 
of consideration.”



smarT conTracT leGal concerns | 273

From an enterprise perspective, it is important to determine how your smart contracts will be 
written and how the contract elements are addressed. The common elements need to be applied 
and the established legal concepts and principles of contract law reviewed by your corporate 
counsel. In the United States, the following are common elements of a contract:

 ◆ Offer—An offer is “an expression by one party of his assent to certain definite terms, 
provided that the other party involved in the bargaining transaction will likewise express 
his assent to the identically same terms” (https://quizlet.com/878323/delong- 
contracts- spring- 09- flash- cards/). In other words, both parties intend to follow 
through on the contract.

 ◆ Acceptance—Acceptance can be made either by a formal acceptance by the acceptor’s 
signature or, under the right circumstances, by beginning or completing performance 
pursuant to the terms of the offer.

 ◆ Consideration—Consideration means that each party must give some form of “return or 
payment” to the other party. Consideration simply means a form of value must be 
exchanged, such as money, materials, or performance of duties.

NOTE contract law varies widely among countries. The chamber of digital commerce has an insight-
ful white paper about how smart contract viability enforcement varies between the United states and 
spain: “smarT conTracTs: is the law ready?” you can find it here:

https://www.dlapiper.com/˜/media/files/people/tank-  margo/smart-  contracts-   
is-  the-  law-  ready-  web.pdf?la=en&hash=003897A104F6A74DD9FC1C2E0FE2A4F16ADE500F

Some states have provided legislation on smart contacts. Here are some examples:

 ◆ In 2017, the State of Arizona passed legislation that allows the specific use of blockchain 
smart contracts in commerce. The law prevents a contract from being denied any legal 
effect, validity, or enforceability solely because the contract contains a smart contract term 
as part of the contract.

 ◆ In 2018, the State of Vermont passed a bill that allowed limited liability companies 
organized for the “purpose of operating a business that utilizes blockchain technology. 
The law specifically states that a material portion of its business activities” must be elected 
to be a blockchain-based limited liability company. (BBLLC). BBBLC is a new term used 
for these companies.

 ◆ In 2019, the State of California has pending legislation (SB838) that would effectively allow 
corporations to manage the issuances and transfers of their stock using blockchain 
technology.

For more information on state-based blockchain laws, refer to https://www.sagewise.io/
smart-  contracts-  state-  legislation/.

Smart Contract Adaptability
Smart contracts are significantly more adaptable from a legal perspective in Corda than in other 
blockchains because “legal prose” is natively supported. Legal prose is not supported natively in 
Ethereum, Hyperledger Fabric, or Quorum.



274 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

From a technical perspective, one of the main reasons Corda is adaptive is because contracts 
are “stateful contracts” and other platforms are “stateless.” Corda smart contracts verify if a 
transaction is valid and therefore can be committed to the Corda ledger. Legal prose is attached 
to the smart contract and can be adjusted as needed and validated efficiently.

I will discuss the technical merits of smart contracts from a developer perspective in 
Chapter 10, “Hands-On Blockchain Development.”

Legal Jurisdiction
A blockchain can be designed to cross jurisdictional boundaries, as the nodes on a blockchain can 
be located anywhere in the world.

The location of your blockchain nodes could be presenting complex jurisdictional issues. The 
main remedy to this particular concern in an enterprise blockchain is to not use permissionless 
blockchains that are public. Controlling your node location is the key to avoid issues.

In situations where your services cross borders, maintain data for protected classes, or even 
enter new markets, you should consider consulting your corporate council and defining jurisdic-
tion clauses.

A jurisdiction clause is commonplace in the United States for most business contract scenar-
ios. These clauses state that involved parties have the right to settle disputes through adjudica-
tion, which is generally predetermined in typical implementations of these contracts. When a 
party expressly submits to the authority of a court in a specific jurisdiction, they may find it 
challenging to successfully argue that the court in question is not the appropriate venue for the 
adjudication of such disputes.

In a nutshell, a jurisdiction clause can mitigate issues in a contract whether it is a traditional 
contract or an electronic contract. In Corda, for example, you would simply attach a memoran-
dum to the CordApp.

Liability of Services
The risk to customers as a result of a systemic issue with blockchain infrastructure and its 
applications could be significant—for example, if a transaction is not realized or is incorrect.

Some areas of concern to focus on include the following:

 ◆ Designating audit responsibilities

 ◆ Performing duties for blockchain application administrators and users

 ◆ Measuring and monitoring the performance of blockchain services

 ◆ Handling outages and support

 ◆ Distinguishing services hosted in the cloud or on premises

 ◆ Deploying the enterprise nodes and the cloud providers’ locations (multiregional)

These are just some ideas to consider. Any time legal concerns are in play, consulting your 
corporate counsel is paramount.



Financial secTor compliance | 275

Financial Sector Compliance
The financial technical (FinTech) sector is required to maintain compliance requirements such as 
SOX, Basel II, and numerous others. Other requirements, such as KYC/AML and the right to be 
forgotten, present other challenges. Managing your compliance requirements on the blockchain 
can certainly be achieved with proper planning.

Compliance requirements such as GDPR, Basel II, GLBA, and PCI DSS can be burdensome to 
FinTech companies. Blockchain technology can be used to reduce the burdens that companies 
experience with these compliance areas.

FinTech compliance is complex and specialized. Some areas of concern are handling customer 
data, protecting intellectual property, and auditing and logging. The complexity is a direct result 
of the additional compliance burden that is placed on the financial sector around these areas 
of concern.

Handling Customer Data
In the financial sector, customer data is heavily regulated. Everything from privacy, maintenance 
of records, and removal of customer records is strictly controlled. Blockchain can both provide 
unique value in some areas and pose significant concerns in other areas of customer data.

Blockchains store data once, and it cannot be altered. When a customer’s data is stored on a 
blockchain, it cannot be deleted. Complications can also arise around transparency, which is the 
main reason a permissionless blockchain cannot be used in the financial sector. Both transpar-
ency and privacy handling have implications around compliance, especially if there is a data 
breach. Privacy should be a financial-sector priority, and blockchain can provide some of these 
requirements.

Intellectual Property
Intellectual property is a specialized area of law that deals with protecting the rights of those 
who create original works. It covers copyrights, patents, and trademarks.

Blockchains are increasingly being used to maintain immutable records of intellectual 
property. In the financial sector, areas such as trading algorithms, risk assessments, and stress test 
data may be considered intellectual property. The need to familiarize yourself with how your 
blockchain data maintains compliance in this area is critical.

Some areas in the financial sector where intellectual property is commonly claimed for term 
protection include the following:

 ◆ Patents are claimed for blockchain platforms, mathematical patents, and algorithms. There 
are different types of patents, and the term protections vary. Generally, the term protec-
tions are from seven to twenty years.

 ◆ Trademarks are claimed for things such as brand logos, web platform interfaces, and 
instructional materials. Trademark protection in the United States lasts for 20 years.

 ◆ Trade secrets are also claimed. They are unique in that there is no expiration date; they are 
indefinite.



276 | CHAPTER 9 Blockchain Governance, risk, and compliance (Grc), privacy, and leGal concerns

NOTE an interesting service is called Bernstein. Bernstein is a regular web app that runs in any 
modern browser where you create a digital trail of records of your ip using blockchain technology. 
The blockchain keeps a historically accurate as well as transparent record of the intellectual property 
you create.

you can find out more about Bernstein by visiting https://www.bernstein.io/.

Auditing and Logging
Blockchains have the embedded capacity to create tamper-proof system logs for use in managing 
access to your IT network services. Blockchains are generally considered a network resource and 
clearly need to be audited regularly. To mitigate risks to your blockchain, you must perform IT 
audits, validate audit trails, attend to auditor visits, and maintain compliance certifications.

IT server system logs and network services logs facilitate some critical functions for the 
enterprise. These logs can protect the enterprise against cybersecurity breaches because they 
provide an audit trail of who has accessed a network, application, database, or blockchain ledger, 
as well as identify the user’s activities.

These blockchain systems and network logs essentially are audit logs and therefore allow 
enterprises to detect hackers and inappropriate employee behavior.

Figure 9.5 shows how a blockchain solution performs the audit log time-stamping process.

Audits are generally a required part of the compliance mandates your enterprise may need 
to comply with. Compliance audits are performed by an independent third party, referred to as 
the auditor and will reference logs that will be referencing the ledger activity on the blockchain.

Auditors need to extract the data from the blockchain and then consider whether the data is 
reliable. Establishing an audit trail could be tricky, especially on a permissionless blockchain. For 
example, a transaction recorded in a blockchain may still be

 ◆ Unauthorized, fraudulent, inappropriate, or even illegal

 ◆ Executed between related parties

 ◆ Linked to a side agreement that is processed off-chain

 ◆ Incorrect classifications made on the blockchain

User goes to website to
enter Ethereum

address

Website Requests
Authorization

Authorization
presented
to owner

Owner receives
request

Authorization Requested

Owner validates request Challenge Accepted

Ethereum Wallet
transferred Ether

Settlement

Ethereum Authorization Application Workflow

Figure 9.5 
audit logs



sUmmary | 277

There is still quite a bit of discussion in the financial sector (specifically the accounting 
specialization) about whether blockchains may constitute sufficient appropriate evidence for 
certain financial statement confirmations and whether the blockchain ledgers provide sufficient 
audit evidence related to the nature of the transactions that are processed.

Having as a result of multiple copies of ledger data, blockchains could provide significant 
benefits for ensuring consistency of audit trails. This would be as a result of removing the 
manually intensive, time-consuming processes involved with compliance auditing.

In a nutshell, the audit trail cannot be hacked and is immutable from several perspectives. 
Transparency into the blockchain ledger transactions could also be given to auditors and 
government regulators to view the audit logs at any time.

Blockchains are an evolving area in the compliance and legal sectors, and the baselines are 
still being established. Several solutions are on the market that can outsource and facilitate 
compliance. For example, compliance-as-a-service cloud solutions can integrate and aggregate 
audit trails in a compliance-as-a-service datastore that maintains compliance with GDPR 
and HIPAA.

A company called Log Sentinel has a blockchain-based solution called Sentinel Trails, which 
offers secure logging and audit trails. The solution stores evidence of every critical event on the 
blockchain with qualified time stamps and/or qualified electronic signatures. You can find more 
information at https://logsentinel.com/sentinel-trails/.

Summary
This chapter covered the various aspects of data privacy, audit logs, legal concerns, and compli-
ance. Determining whether a cryptocurrency is a security depends on the circumstances under 
which it is sold.

The Howey Test is the baseline that determines whether a financial transaction qualifies as an 
investment contract and thus is a security.

Personal identifiable information is information that can be used to uniquely identify, contact, 
or locate a single person in the United States. In the European Union, PII data is called personal 
data. There are many similarities between the two compliance requirements.

When you are considering a blockchain solution and addressing compliance requirements, a 
best practice is to discuss these requirements with your corporate counsel.

The location of your blockchain nodes could be presenting complex jurisdictional issues 
around compliance.

Compliance requirements include PCI, SOX, GDPR, and hundreds of other possible require-
ments. Companies that are global must be aware of major regional data privacy legislation and 
protect themselves accordingly. It is imperative that data security and privacy professionals 
assess their environments and ensure that if they do business or employ someone from the EU, 
GDPR will apply to their organizations.

In the financial sector, areas such as trading algorithms, risk assessments, and stress test data 
may be considered intellectual property, and the need to familiarize yourself with how your 
blockchain data maintains compliance in this area is critical.

Blockchains are generally considered a network resource and clearly need to be audited 
regularly.



Chapter 10

This chapter provides a general overview of blockchain development by offering insight into the 
most common development languages, development tools, and the blockchains they are used for.

I will focus mainly on the high-level aspects of development around the Ethereum, 
Hyperledger, Corda, and Quorum blockchains as well as the development languages they are 
built on. The world of blockchain development is a far and wide specialization area. Each 
blockchain has its own approach to development, toolsets, consensus, and dependencies, and 
could merit its own book on the subject of blockchain development.

Blockchain development is a growing area. The demand has never been higher due to the 
shortage of developers who understand blockchain. If you are developing in JavaScript, Golang, 
Python, or any common language, you are already on the road to being a blockchain developer.

The goal of this chapter is to give an overview of how the blockchains are built around the 
programming languages, data structures, and programming building blocks.

If you are looking for programming instructions, note that this chapter does not focus on 
developing applications or programming methods; rather, this chapter is intended as a guide for 
systems engineers and other nondevelopers to grasp the complexity of blockchain development.

Common Programming Languages
Blockchain programs are computer code and are known as smart contracts. Developers who are 
programming for web apps, enterprise apps, or cloud apps are likely frontrunners to be block-
chain developers.

If you’re a system engineer, whether presales or postsales, you are also likely to understand 
some aspects of programming languages. Your customers are likely already using some of these 
in their development organizations, which can give your customers’ organizations a head start in 
blockchain development.

The main point is that blockchains are about creating programs, and these programs are built 
on development languages you likely already use in your enterprises. The programs ultimately 
will solve problems, create value, or provide other tangible benefits for the company. The only 
significant learning curve is to know how the smart contracts interact with the blockchain 
network and perhaps to understand the APIs used to enable the client applications to interface 
with the application.

Let’s run down the most common blockchain languages. This will give you a good idea of 
what’s in demand. If you’re looking for a blockchain developer, you will have a more concise 
requirements list to give to your recruiters.

NOTE Blockchain development is not just about code; it’s also about solving problems.

Blockchain Development

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



280 | CHAPTER 10 Blockchain Development

Most Common Development Languages
When it comes to development languages, a few languages are clearly in high demand in 
blockchain development. Some languages are used on only a few blockchains. For example, 
Solidity is used only on Ethereum and Quorum, but it makes up well over 60 percent of the 
blockchain developer requirements listed on LinkedIn at the time of writing.

Note that other common development languages are also used, for example, in Bitcoin, Lisk, 
and EOS, as well as other newer blockchains that I do not cover in the book. The main coverage 
in this chapter will focus on Ethereum, Corda, Hyperledger Fabric, and Quorum.

The following are the most commonly used languages in enterprise blockchain development:

 ◆ Solidity

 ◆ Golang

 ◆ C++

 ◆ JavaScript

 ◆ Python

When it comes to holistic development and not just blockchain-focused development, Python 
is the clear winner at the time of writing. Finding Python professionals likely will not be an issue 
due to the wide acceptance of the Python development language.

For additional insight into which development languages are in demand and the current 
popularity of each language, refer to a resource compiled from Google called “PYPL Popularity 
of Programming Language Index,” at http://pypl.github.io/PYPL.html.

Solidity
When it comes to blockchain development, Solidity is the most widely used and in-demand 
developer requirement at the time of writing for enterprise blockchains. A contract-oriented 
Turing-complete programming language, Solidity has a large base of Ethereum developers, with 
an estimated 250,000+ users.

Solidity is a relatively simple programming language that is used with Ethereum developers. 
Solidity was clearly developed specifically for the Ethereum platform.

The developers of Solidity used specific features, functions, and concepts from C++, Python, 
JavaScript, and Golang to assemble the new language. Solidity’s main program syntax is based 
on JavaScript, a widely used development language. Because Solidity is built from JavaScript, it 
has a low barrier of entry for developers.

When you think of developing in Ethereum, you think of Solidity since it was developed 
exclusively for Ethereum smart contracts initially. Solidity has essentially expanded to become its 
own standard for other blockchain platforms to follow. At the time of writing, the most widely 
used languages for writing smart contracts on Ethereum are Solidity and Vyper.

Why is Solidity so popular? Solidity is a powerful and efficient toolset for developers because 
it allows programmers to write higher-level code, which is then compiled down into what is 
considered a low-level machine language. Smart contracts can be written in Solidity, Vyper, and 
Serpent mainly because they are high-level languages that are compiled down to bytecode. 
Bytecodes are essentially operation codes (opcodes) running instruction after instruction.

Blockchains that directly support smart contracts written in Solidity include Ethereum, 
Ethereum Classic, and Hyperledger Sawtooth (with Seth).



common programming languages | 281

Golang
Golang (Go) is an open source general programming language that is lightly based on the syntax 
of the C programming language. Golang also has some ease-of-use similarities to JavaScript, 
which gives Go a low barrier to entry.

Originally designed by Google engineers, Golang was released directly to the open source 
community in 2009. Golang has become a popular object-oriented and imperatively designed 
programming language. More than 800,000 developers use Golang.

Hyperledger Fabric is built from Golang. The following are some of the benefits of using 
Golang (Go) with Hyperledger:

 ◆ Provides a fast statically typed and compiled language

 ◆ Supports type-safety and dynamic data entry

 ◆ Allows the creation of flexible and modular code, and thanks to its multithreading 
mechanisms, enables distributed computations and simplified network interaction

 ◆ Provides convenient testing tools for developers on GitHub

 ◆ Offers efficient development processes

Ethereum’s SDK protocol is actually written in Go. There are many other blockchain applica-
tions of this language. Blockchains that are written in Golang (Go) include Hyperledger 
Fabric and NEO.

C++
C++ is the oldest development language used for blockchains. C++ has been around for more 
than 30 years and was originally known as “C with Classes.” C++ features worth noting for 
blockchains include memory control opportunities around scalability, which is a significant 
problem faced by blockchains today.

C++ is considered a general-purpose programming language with an extensive user base of 
more than 4 million developers. It can be used for higher-level tasks and also allows program-
mers to program to the hardware itself. This flexibility has made C++ highly popular for uses 
such as embedded systems and computer graphics.

C++ offers the following benefits:

 ◆ Facilitates proper threading since there are many parallel operations that have to be 
performed simultaneously

 ◆ Performs move semantics, which can significantly improve performance when it comes to 
the value of the variables retrieved

 ◆ Allows compile-time polymorphism, which enables developers to use functions in 
different ways, thereby decreasing code volume and boosting performance

Blockchains that support C++ include Hyperledger Iroha, Bitcoin, EOS, and NEO.



282 | CHAPTER 10 Blockchain Development

JavaScript
JavaScript is generally accepted to be the programming language of the Internet. It has been used 
primarily to enhance web pages to provide for a more dynamic, user-friendly experience. 
JavaScript is widely accepted for development use since it is good at handling asynchro-
nous actions.

This property of asynchronous actions makes JavaScript well suited for blockchain operations 
that require scaling. As the number of users on your blockchain rises, JavaScript can scale with 
the blockchain.

JavaScript is a lower entry point to developers who are interested in programming block-
chains since it’s easy to learn and widely used.

Blockchains that support smart contracts in JavaScript include Hyperledger Fabric, 
Hyperledger Sawtooth, and Lisk.

Python
Python is an interpreted, higher-level, and general-purpose programming language. Python was 
created by Guido van Rossum and was first released in 1991. Python has a design philosophy 
that emphasizes code readability, notably using significant whitespace.

From a development perspective, Python supports a large number of libraries. Python is also 
generally considered to be one of the simpler languages since it has an intuitive code structure. 
For example, code can be written once and run on almost any computer without needing to 
change the program.

NEO is an example of a blockchain that supports smart contracts in Python.

Less Widely Used Development Languages
The following are some less commonly used but also notable development languages for 
enterprise blockchain development:

 ◆ C#

 ◆ Java

 ◆ Rust

 ◆ Simplicity

Although many other languages have been developed, and new languages are likely being 
developed as you read this, I want to focus on languages that have mainstream use.

C#
C# tutorials claim this programming language as an option, and it can be used to create block-
chains because it is object-oriented. It is a widely popular language for portability since it is 
somewhat easy to code in a cross-platform manner for software. It is important to note that it has 
a close relation to Java and would be easily understood by developers.

Blockchains that are written in C# include NEO and Stratus.

Java
Java has been primarily used in website designs since it was simple to connect the link between 
blocks of information. Released in 1995 by Sun Microsystems, Java is a general-purpose pro-
gramming language that is object-oriented, class-based, and concurrent.



common programming languages | 283

There is also a runtime environment (JRE), which consists of the Java virtual machine and 
Java platform core classes and supports Java platform libraries. Java is often used for developing 
client-server web applications, allowing developers to run a compiled Java code on all the 
platforms that support Java without the need for recompilation, making it popular for running 
light-weight cryptocurrency applications.

Blockchains that support smart contracts in Java include NEM, NEO, and Corda.

Rust
Rust is a system language created by Mozilla, one of the Internet pioneers. Rust has several 
advantages that enable rapid blockchain development, including efficient computer processing 
and flexibility around security.

The Rust compiler provides for risk reduction when executing code since it helps to eliminate 
potential problems. Rust has a very active community and a well-provisioned communication 
and learning system for developers.

Corda is an example of a blockchain that supports smart contracts in Rust.

Simplicity
Simplicity is a newer blockchain programming language that was designed exclusively for smart 
contracts. Simplicity was developed by a company called Blockstream, which had a goal to 
provide the flexibility and expressiveness for blockchain computations as well as verifying the 
safety, security, and costs of smart contracts.

Simplicity was well thought out in the sense that it was developed to ensure that the pro-
gramming challenges of traditional development languages were addressed. One of the main 
challenges was to actually program efficiently for the role of a blockchain. The role of a block-
chain should be only to verify computation. A traditional programming model would be more 
focused on performing computation.

For more on this exciting new blockchain development language, refer to this site:
https://blockstream.com/2018/11/28/en-simplicity-github/

Summary of Blockchain Platforms
Numerous languages are used on the various platforms for cryptocurrencies and enterprise 
blockchains. For example, in Ethereum you have several choices, but the main language from a 
development perspective to focus on is Solidity.

Table 10.1 summarizes the major enterprise blockchain languages.

Table 10.1: Blockchain platforms and Development languages

Blockchain Platform Platform Development Smart Contract Languages

ethereum solidity solidity/vyper/Bamboo/Flint

hyperledger Fabric golang golang/Javascript/Java

corda kotlin kotlin and Java

Quorum solidity solidity

ripple python n/a



284 | CHAPTER 10 Blockchain Development

When considering a blockchain platform, it is important not only to consider your organiza-
tion’s expertise requirements for blockchain development but also to review and document any 
legacy applications’ requirements that may be extended to the blockchain service.

Ethereum Development
An open source and collaborative effort, Ethereum is by far the blockchain that has the most 
robust development ecosystem and developer following. The main feature of Ethereum that 
drives this large developer following is the Turing-complete language that facilitates the devel-
opment of smart contracts.

Developers should note that Ethereum is geared toward applications that automate direct 
interaction between peers or that facilitate group routines over the Ethereum decentral-
ized network.

Ethereum itself is only a protocol defining how the communication should work. There are 
several versions of the Ethereum protocol. The two most common versions are Go-Ethereum (aka 
GETH), which is written in Golang, and Parity, which is written in Rust.

There is a dearth of development tools, utilities, and testnets for Ethereum. Some of the most 
common tools include the following:

 ◆ IDE: Solidity Browser, Ethereum Studio

 ◆ Clients: Geth, Parity, Ethereum Wallet

 ◆ Storage: IPFS (supported through Swarm and Storj)

 ◆ Dapp browsers: MetaMask, Mist

 ◆ Testing: Testnets, TestRPC, localhost

There are numerous other tools for testing IDE environments, frontend and backend develop-
ment, and security. For more details on the robust Ethereum ecosystem, check out the ConsenSys 
GitHub here:

https://github.com/ConsenSys/ethereum-developer-tools-list#smart-contract- 
languages

Smart Contracts
A smart contract is computer program code capable of organizing, executing, and enforcing the 
negotiation or performance of an agreement using blockchain technology. From a development 
perspective, the blockchain is somewhat limited in the sense that the API calls that can made 
are minimal.

Developers are generally well versed in automating tasks, which is exactly what smart 
contracts perform. A smart contract is an automated process that can be considered a suitable 
legal contract in some scenarios.

Smart contracts define the rules of engagement and the penalties around that agreement in 
the same way that a traditional contract does. Developers will clearly define how to handle any 
violations of the smart contract from a code perspective.



ethereum Development | 285

In Ethereum, as in other blockchain languages, there are specific functions to deal with. Your 
developers should clearly understand how these functions work and how the program would 
come together as an application.

Smart Contract Workflow
As discussed in Chapter 2, two types of functions are required in an Ethereum smart contract.

 ◆ Constructor function, which is called only once when you deploy the smart contract

 ◆ Fallback function, which is invoked when someone sends ether to the address of your 
smart contract

Figure 10.1 shows the smart contract workflow in Ethereum.

Here are the steps with more information:

1. Predefined contract: All the smart contract participants will establish the terms and also 
establish the conditions for execution.

2. Events: These are really event “triggers” that kick off the execution of the contract. Events 
include initiating a transaction and receiving funds, for example.

3. Execute transfer: The terms of the contract specifically dictate the movement of value 
based on the conditions met.

4. Settlement: The settlement of the contract is based on the requirements being met. For 
example, was $100,000 received from the title company?

Smart contracts, when combined with other smart contracts, make a decentralized application 
(dapp). A dapp can be as simple as a few lines of code or as complex as possible with thousands 
of lines of code. Complexity can be built into the platform or could also be extended off-chain as 
well. Developers have myriad options during the development process to customize the dapps.

Smart Contract Enforcement
To modify a smart contract’s data, a blockchain user must send requests directly to its code. That 
is, the request does not go through an intermediary but instead will be fully handled by the 
smart contract code.

The smart contract modification process that will kick off determines whether to fulfill the 
request and how to fulfill requests that have been sent. Effectively, the smart contract is self- 
enforcing the rules that are clearly defined.

Comparatively, you can think of smart contract enforcement as how a traditional database such 
as SQL uses what is called an enforced stored procedure. In SQL you can specify how the stored 

Predefined
Contract Events Execute

Transfer Settlement

Figure 10.1 
smart contract workflow



286 | CHAPTER 10 Blockchain Development

procedure will work by using the CREATE PROCEDURE command. The CREATE PROCEDURE 
command will first reference specified parameters, such as students, addresses, money, and so on. 
Then the stored procedure will take in the specified value and compare it to what is in the 
var_return value.

In SQL, all inserts have to be executed at once or none at all, which is similar to how a 
blockchain enforces the smart contract logic. In blockchain we would call this strict enforcement 
predefined rules. Predefined rules in a blockchain would specify whether a sender has provided 
the exact amount of funds. If the exact amount of funds were sent by the sender and then 
promptly received by the receiver, then the smart contract would execute. Simply put, smart 
contracts are all or nothing from a layperson’s perspective.

Dapps
Dapps (decentralized applications) run on a P2P network of computers (such as Ethereum) and 
are not centralized. When developing blockchain applications with Ethereum, you have two 
distinct options.

 ◆ Use Solidity or another development language to develop smart contracts that will be 
deployed to the blockchain.

 ◆ Develop websites that interface with the Ethereum blockchain.

When it comes to developing dapps, it’s important to understand how different a blockchain 
is from a traditional client server application. Developers are well versed in client-server applica-
tions and understand the world of the Web. Moving from Web 2.0 to the new world of Web 3.0 
will take newer skillsets and application development languages. Decentralized apps will 
become the thing of tomorrow, and developers need to get skilled in this area.

Figure 10.2 provides a high-level comparison of Web 2.0 applications to the layers of a 
blockchain application Web 3.0.

Application-Layer Comparison

Internet

Client Server

Web Applications

Peer to Peer (P2P)

Blockchain

Dapps
P2P
Apps

Web 3.0Web 2.0
Figure 10.2 
application- layer 
comparison



ethereum Development | 287

The infrastructure layer in blockchain technology is different from Web 2.0 in the sense that 
P2P networking is being introduced as the approach used to move from a centralized web to 
more of a decentralized web.

Blockchain is considered to be fully capable of providing technological benefits because of its 
decentralized capacity. Web 3.0 is focused on changing our application stacks from client-server 
to a decentralized Web. With decentralization, the risk of common security breaches could be 
reduced due to the decentralization of data distribution.

From an application-layer perspective, developers would need to consider dapps, business 
logic, application services, and even the user interfaces to integrate.

Ethereum Gas
Ether, the native token of the Ethereum blockchain, is used to pay for transaction fees, miner 
rewards, and other services performed on the network.

To use the Ethereum network, you must pay with what is known as gas. Gas is a measurement 
roughly equivalent to computational steps for Ethereum. Every transaction is required to include 
a gas limit and a fee that it is willing to pay per gas. The blockchain miners have the choice of 
including the transaction and collecting the fee or not. Every operation has a gas expenditure on 
an Ethereum Virtual Machine (EVM), and that gas expenditure can be controlled from a cost 
perspective.

The price of gas is the amount of ether you are willing to spend on every unit of gas. This gas 
price is similar to an auction limit where you can determine what you get and when you get it.

Comparatively, if you are familiar with AWS EC2 virtual machines, then you may have used 
what are called spot instances. Spot instances in AWS are virtual machine instances that you can 
run programs on at a lower cost.

Figure 10.3 shows the main resource (ethgasstation.info) for estimating gas resource costs 
on the Ethereum network.

Note that the more important it is to process the transaction, the higher the price. Essentially, 
the more gas you pay for, the faster your services execute.

Figure 10.3 
eth gas station



288 | CHAPTER 10 Blockchain Development

One common concern around the gas model is that because it’s an estimate of resources, loops 
should be avoided. Avoiding loops can be a challenge to estimate since if your application scales 
or your user base grows, then the costs could skyrocket. Loops in Ethereum are similar to an 
all-you-can-eat buffet and need to be avoided.

Ethereum Virtual Machine
When developing on Ethereum, it is important to understand how the EVM has been designed 
and enabled for the Ethereum blockchain. For example, smart contracts are written in a smart 
contract programming language, such as Solidity, and then compiled into what is known 
as bytecode.

Bytecode enables what an EVM can read and execute. The smart contract that is rolled out is 
on every node of the network, runs the EVM, and executes the same instructions.

The EVM not only provides amazing value to enterprises and their users but also enables the 
development of potentially thousands of different applications all on one platform.

The Ethereum blockchain is deterministic, meaning that the same input will produce the same 
output. This reduces the complexity of the programming involved and can remove numerous 
manual mistakes.

Figure 10.4 shows the development and deployment process on an Ethereum EVM at a high 
level. A smart contract was developed in Solidity. We would compile our program and then 
deploy on the EVM.

Ethereum Ecosystem
Ethereum has a solid and well-provisioned development system.

 ◆ Solidity is the development language that is used to create Ethereum smart contracts.

 ◆ The Ethereum wallet is used for accessing Ethereum tokens, which are used to pay fees for 
the usage of the Ethereum resources.

EVM Development

Code is
Developed in
an IDE - Truffle

Code Compiled

Code Deployed

Bytecode

Ethereum Virtual
Machine (EVM)

Smart Contract
Figure 10.4 
evm development and 
deployment



ethereum Development | 289

 ◆ Testnets are used for the developers to deploy code on a test network away from 
the mainnet.

 ◆ Test ether is created to pay transaction fees on various testnets.

 ◆ Development environments are provided for the building of smart contracts.

 ◆ The Truffle framework is a widely accepted development environment, testing frame-
work, and asset pipeline for Ethereum.

Ether Units
Ether is broken down into units or denominations. A gwei is a unit of Ethereum coin used to 
calculate transaction fees. For example, one Ethereum coin is worth 1 billion Gwei.

Table 10.2 shows the breakdown of the Ether units into the denominations.

For more information on the Ethereum denominations, visit http://ethdocs.org/en/
latest/ether.html.

MetaMask
MetaMask is an inline Internet browser bridge that facilitates significant efficiencies around 
development and testing. For example, developers can run Ethereum decentralized applications 
(dapps) right in the Internet browser (Chrome), rather than having to run a full Ethereum node 
locally. By using MetaMask, a developer can control both CPU utilization as well storage space 
requirements on their laptop, desktop, or server.

A full node would require more than 2 TB of data storage, whereas MetaMask is stored in 
your Internet browser. MetaMask has an ERC-20-compatible wallet and provides privacy and 
security tools to help prevent phishing.

Table 10.2: ether units

Unit Wei Value Wei

Wei 1 wei 1

kwie (babbage) 1e3 wei 1,000

mwie (lovelace) 1e6 wei 1,000,000

gwie (shannon) 1e9 wei 1,000,000,000

microether (szabo) 1e12 wei 1,000,000,000,000

milliether (finney) 1e15 wei 1,000,000,000,000,000

ether 1e18 wei 1,000,000,000,000,000,000



290 | CHAPTER 10 Blockchain Development

Using MetaMask makes Ethereum development much more simplified around key manage-
ment since it also encrypts the user’s key locally and then requires the user to confirm the key. 
After confirming, the user signs the transactions/messages and then relays them to the Ethereum 
blockchain.

MetaMask includes a secure identity vault, providing a user interface to manage your 
identities on different sites and sign blockchain transactions. MetaMask could also be considered 
a “zero client.” Zero clients run in the browser in JavaScript.

Use MetaMask for confirming your transaction’s

 ◆ Balance

 ◆ Gas limit

 ◆ Gas price

Figure 10.5 shows the initial menu of a MetaMask browser login from Chrome. You can see 
contract interactions that used micro instances of gas usage. Micro gas usage is considered to be 
less than a gwei of gas units.

You can download MetaMask via a browser extension in Chrome or from https:// 
metamask.io/. Note that you should never download MetaMask from a third-party site due  
to the likelihood that the version has been tampered with or is malware.

Figure 10.5 
metamask



ethereum Development | 291

Mist
Mist has been the browser for decentralized web apps and has recently been announced to be 
deprecated. However, it is still widely used, and therefore some discussion on it makes sense.

Mist is an Ethereum browser where you get a web browser with direct Web3 access. Mist is a 
full node, so you don’t have to connect to a third-party node. This is different from MetaMask in 
the sense that with Mist you are downloading a full node. In MetaMask, you do not download 
the full blockchain to your node (full node).

A full node is where the node downloads locally the full blockchain that is the current world 
state. This will take up significant resources on most average personal computers, so ensure that 
you are not already resource challenged.

Another important note is that if you only need a wallet, then don’t use Mist. Use MetaMask 
instead or even MyEtherWallet.

You can download Mist from https://github.com/ethereum/mist.

Parity
Parity is a lightweight browser-based wallet that gives users access to decentralized applications 
and currencies on Ethereum. Parity is an implementation written in Rust and is one of the most 
common wallet implementations used in the Ethereum network.

Parity comes with an extensive built-in Ethereum wallet and fully functional dapp environ-
ment. Parity has a Web3 dapp browser and is supported on Linux, macOS, and Windows.

Geth Ethereum
Geth Ethereum is an implementation of Ethereum written in the Go programming language. To 
use Geth, you need to install the command-line interface and interact with a full node in Go.

Geth is supported on various platforms such as Linux, macOS, and Windows. Geth is also 
built to be flexible in how you install it, which can be from a package manager, containers, or 
even stand-alone builds. Geth allows you to take part in the Ethereum mainnet and perform a 
number of tasks on the Ethereum blockchain, including the following:

 ◆ Mining ether for profit

 ◆ Transferring funds between Ethereum wallet addresses

 ◆ Exploring the block history on the blockchain explorer

 ◆ Creating smart contracts and dapps

Geth is available for download at https://github.com/ethereum/go-ethereum/wiki/Geth.

Ethereum Networks
In Ethereum everyone can start their own blockchain based on the Ethereum protocol. We have a 
mainnet, which is the production blockchain network, and we have testing or development 
networks, which are exactly what they sound like.

You can also deploy a private Ethereum network, or you can connect to any various networks 
that are available, such as Ropsten. This means the Ethereum mainnet can be replicated in a way 
that it behaves the same way the real mainnet does. The benefit is that it does not require any real 
financial resources from the developer community.



292 | CHAPTER 10 Blockchain Development

These “testnet” networks are for testing features and functions with your Ethereum smart 
contracts. These networks, which use a network ID, can be a moving target, so check the 
addresses routinely. The best resource to keep track of these Ethereum networks is the Ethereum 
Stack Exchange, available here:

https://ethereum.stackexchange.com/questions/17051/
how-  to-  select-  a-  network-  id-  or-  is-  there-  a-  list-  of-  network-  ids/17101#17101

Note also that not every testnet is supported in the same way, and generally developers tend 
to stick with what they are comfortable with.

Testing your smart contracts locally with MetaMask is expected. One more area of testing 
your smart contracts is to extend the test to a testnet with MetaMask. For example, Developers 
could develop locally and test to any number of supported testnets or the mainnet.

As shown in Figure 10.6, four main testnets are supported. The default network setting is the 
mainnet with MetaMask. Ethereum best practices dictate to develop first locally, and then 
developers would want to identify which testnet we will use to test the application. The sup-
ported testnets with MetaMask include Ropsten, Kovan, Rinkeby, and Goerli. We can also create 
a custom remote procedure call (RPC) to test against an on-premises blockchain.

In the figure, you can see that Main Ethereum Network is the default network. When you 
change from the mainnet to the testnet, you need to ensure that you have test ether to perform 
application testing.

Ethereum MetaMask Faucet
When testing your Ethereum application on a testnet, you need to obtain what is known as test 
ether for the testnets. Test ether is essentially free ether to use only on the testnet to perform your 
application testing. To request your test Ether, you need to go to an Ethereum faucet.

Figure 10.6 
metamask networks



ethereum Development | 293

An Ethereum faucet is an online platform that rewards users with small amounts of ether 
(ETH) for completing a variety of microtasks such as posting social media notices. In return, the 
requester receives test ether to use on the testnet.

To use the Ethereum MetaMask faucet, you need to have MetaMask installed and enabled in 
your browser. If you do not have MetaMask, then when you go to the Ethereum faucet, you 
would receive an error stating you need to have MetaMask installed and enabled.

To install MetaMask, go here:

https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbef
gpgknn?hl=en

After installing the Chrome extension and enabling it from the extension menu in Chrome, 
you can go to https://faucet.metamask.io/.

Figure 10.7 shows the MetaMask Ether Faucet. If you want to obtain some test ether to run on 
the Ropsten testnet, select Request 1 Ether From Faucet.

When connecting to the faucet, if your MetaMask is connected to the mainnet, then you 
would receive an error such as “ currently on mainnet - please select the correct test network.”

Figure 10.8 shows the Connect Request screen where the developer need to connect our 
MetaMask account. Select Connect and you are on your way to receiving test ether.

Once the task is done connecting the faucet, the developer then see test transactions under the 
transactions part of the faucet interface, as shown in Figure 10.9.

Figure 10.10 shows the transaction details on Etherscan. When you click the link to a transac-
tion, you are brought to the Ropsten testnet on Etherscan (https://ropsten.etherscan.io/tx/
0x4ce3ee99e291a69f35fe00d3a84e291634ef881388adb4f77130b8bf47253017).

Rinkeby Test Faucet
The Rinkeby Ether testnet faucet (https://faucet.rinkeby.io/) was implemented to prevent 
malicious actors from utilizing all available funds. This faucet has a different approach in how to 
request or obtain test ether. The requests are actually done via social media. At the time of 
writing, a Twitter or Facebook account is used to request funds within the permitted limits.

Figure 10.7 
metamask ether faucet



294 | CHAPTER 10 Blockchain Development

Figure 10.11 shows a tweet with my Ether address that I want to receive the Rinkeby 
test Ether.

On the Rinkeby site, just paste your social media link in the box and select how much ether 
you need (see Figure 10.12). Note that this is test ether, not something you can trade. It’s that 
easy: just select Give Me Ether, and your account should be credited for the Rinkeby network. 
You can go back to MetaMask and validate the amount was deposited.

Figure 10.8 
connect request screen

Figure 10.9 
Faucet transactions



ethereum Development | 295

Ethereum Nodes
Developers new to Ethereum should pay attention to the type of nodes deployed. One area that 
makes Ethereum so flexible and powerful is the different node capabilities and features.

Figure 10.10 
ropsten testnet 
transaction details

Figure 10.11 
requesting test ether 
for rinkeby

Figure 10.12 
rinkeby give me 
ether option



296 | CHAPTER 10 Blockchain Development

Think of the node types as different use cases. Some are for deploying live applications, some 
are for development, and some are for testing your blockchain applications. Ethereum blockchain 
nodes that are not simulated include the following:

 ◆ Aleth is the new name of Cpp-ethereum, a collection of C++ libraries and tools for 
Ethereum blockchain. Aleth is supported on Ubuntu, macOS, and Windows.

 ◆ Go-Ethereum (GETH) is one of the three original implementations of the Ethereum 
protocol. It is written in Go, is a fully open source, and is licensed under the GNU LGPL 
v3. It is supported as a stand-alone client, or you can install libraries.

 ◆ Parity is an Ethereum client and is written in the Rust language. Parity is a full node with 
the following node options: Full Working Node, Light, Warp, Full Node, or Archive node.

We can use simulations as well to mimic the real blockchain for development purposes. 
In-memory blockchain simulations for rapid development include the following:

 ◆ TestRPC, which is the Ethereum blockchain simulator

 ◆ Ganache, which allows you to create a private blockchain for simulation and which uses 
the Ganache CLI, which then uses Ethereum’s to simulate full client behavior

 ◆ Truffle Developer Console, which uses Ganache as part of the Truffle suite

Clients can gain access to the blockchain in several convenient ways.

 ◆ MetaMask browser plugin through Infura

 ◆ StatusIM Android or with iOS app through Infura

Status IM is an application that combines a messenger, a crypto wallet, and the Web3 browser. 
You can find information about it at https://status.im/.

Infura is a development suite that provides an instant, scalable API access to the Ethereum 
and IPFS networks. For more information, visit https://infura.io/.

 ◆ MIST dapp browser with integrated Geth

There are some simple ways to get started running a private blockchain test. For example, you 
are considering using Truffle there are three typical steps.

1. Log in and then spin up a Truffle project. The project needs to lay out the implicit structure 
of your project. You can run the test on the mainnet, on Ganache as a private test blockchain.

2. Run the deployment file. You would point your project either to use Ganache or to use the 
mainnet network.

3. Run the truffle migrate command. This will automatically run truffle compile, 
which will deploy the smart contracts on the network specified.

Solidity Programming Language
Ethereum-based applications and smart contracts are written in Solidity, a language specifically 
designed to utilize the EVM.



ethereum Development | 297

Solidity, which was proposed in August 2014 by Dr. Gavin Wood, is similar to C. It is also 
similar to JavaScript, although it uses a whole new framework. Developers versed in JavaScript 
will have only a small knowledge gap to overcome. JavaScript is a universal language for the 
Web and is being used in a large number of applications.

Solidity is also similar to object-oriented languages like C++ and C#, whereas JavaScript is 
based on HTML and influenced by languages such as Self and Scheme. When it comes to 
handling complex data structures, Solidity is similar to Java in many respects. Solidity is 
designed specifically for Ethereum applications and runs only on the Ethereum blockchain.

Ethereum APIs
Ethereum uses JSON, a lightweight data-interchange format, for its API library. It can represent 
numbers, strings, ordered sequences of values, and collections of name-value pairs.

Application programming interfaces (APIs) are used to interact with the blockchain network. 
APIs are meant to provide a rapid on-ramp for developers. They are also referred to as endpoints.

To talk to an Ethereum node from inside a JavaScript application, use the web3.js library, 
which gives a convenient interface for the RPC methods. For example, if you wanted to have 
your application access the Ethereum blockchain with Etherscan, you would want an API for 
that. The API for Etherscan is located at https://etherscan.io/apis.

Remix
Remix (https://remix.ethereum.org/), also known as the Solidity browser, is a browser-based 
IDE that was built by the Ethereum development team to address ease of development. The 
Remix IDE is used to write, compile, and debug Solidity code.

Remix is more than just a powerful, open source development tool that enables you to write 
Solidity contracts straight from your browser. Remix is also an online learning solution since it 
enables developers to really get up to speed quickly around smart contract development. Remix 
supports development both locally and online.

Remix has what developers would consider modules. A module is basically a plugin that can 
be added to the development environment that is being used in Remix.

Figure 10.13 
remix interface



298 | CHAPTER 10 Blockchain Development

Figure 10.13 shows the Remix interface, which was recently updated at the time of writing.
Remix includes a plugin for Etherscan Contract Verification. You can use the tool to verify that 

the code deployed with a contract is valid and to publish the code on Etherscan.
Another useful feature is that you can choose your compiler version and also correlate this 

version to a nightly build. You can simply compile your code with different compilers and 
validate how these builds work out.

Figure 10.14 shows an example of running test code in a specific version of the compiler and 
then receiving a green checkmark on the left sidebar indicating that the code was compiled 
successfully.

Another great feature is that you can push your code to Ethereum Swarm. Ethereum Swarm is 
a peer-to-peer (P2P) file storage distributed network that allows the distributed and encrypted 
storage of users’ data.

Remix is a powerful yet complex tool since the ecosystem has grown significantly. It is the best 
way to learn Solidity for most developers wanting to develop in Ethereum.

Vyper
Vyper is a contract-oriented Pythonic programming language that specifically targets the EVM. It 
is still an experimental programming language, but it compiles down to EVM bytecode, just as 
does Solidity.

Vyper is designed to be a simple-to-create and easy-to-comprehend smart contract engine that 
provides more transparency for all parties involved.

Vyper looks logically similar to Solidity and has some similarities to Python as well. Vyper is 
still in beta mode at the time of writing, so I won’t cover it in detail.

Web3-eth
Web3-eth is used for blockchain and smart contract development in Ethereum. The library is 
Web3, and I like to consider it an “on-ramp” to Ethereum development and the world of decen-
tralized applications.

Figure 10.14 
compile successful



ethereum Development | 299

You can use Web3-eth with Ganache, for example, and create test accounts to test your smart 
contracts. You can specify ether to transfer from and to your accounts. There are many more 
features about Web3-eth that support the rapid development of decentralized applications.

The main challenge with Web3 is that if you’re not careful with your development, you may 
actually be using a version that has some differences in how you would interact with the 
libraries.

After downloading the Web3 library, you would simply initialize your application node by 
using the following command:

- npm install web3

Before doing anything, refer to the web3 documentation at https://web3js.readthedocs 
.io/en/1.0/getting-  started.html.

Ethereum Testing
Software development generally has a flow that has been widely accepted, and this is true in the 
world of blockchain development as well. The main differences are that in blockchain the steps 
are different, and comparatively there is an additional step.

Table 10.3 compares the generally accepted steps in traditional software development to 
blockchain development.

The main point to understand is that there are software development phases in blockchain, 
and we must approach them differently. Blockchains deploy smart contracts and therefore, will 
likely be simpler to develop than typical enterprise applications. However, the main difference to 
be aware of is that smart contracts, once deployed to some blockchains, are immutable.

Ethereum Testnets
Before deploying your application on the mainnet, you would want to test it on the Ethereum 
testnet(s). The following testnets are available directly from MetaMask:

 ◆ Rikeby

 ◆ Ropsten

 ◆ Kovan

Table 10.3: traditional vs. Blockchain Development

Traditional Software 
Development Phase

Blockchain Software 
Development Phase

prototype prototype

alpha/Beta Framework testing

production private chain testing

update release testnet

mainnet



300 | CHAPTER 10 Blockchain Development

The testnets, even though for testing, require the use of ether, albeit test ether, which is used to 
maintain the nodes. You can gain the test ether in several ways, such as by mining the testnet or 
by using a faucet.

Truffle Suite
The Truffle Suite is essentially a suite of dapp solutions. The following solutions are part of the 
Truffle Suite:

 ◆ Truffle, which is the IDE

 ◆ Ganache, which allows developers to deploy a personal blockchain

 ◆ Drizzle, which contains all the needed front-end libraries

Truffle
Truffle is a developer environment, testing framework, and asset pipeline for blockchains. Truffle 
is essentially a JavaScript library that’s based on NodeJS. Truffle is immensely popular and 
growing in usage monthly. Truffle was developed by Consensus.

Truffle allows developers to spin up smart contract projects at the click of a button and 
provides you with a project structure, files, and directories that make deployment and testing 
much easier (or else you would have to configure these yourself).

To install and run Truffle, you first need to install Node and the Node Package Manager 
(NPM). This can be found at https://nodejs.org/en/40T. After installing Node, you can go to 
any command-line interface (Terminal on Mac/Linux or PowerShell on Windows) and inter-
act with npm.

One interesting project from the Truffle framework is Truffle Box. These are preconfigured 
“mini scaffolding projects” that make starting a new distributed application much more stream-
lined. The list of truffle boxes can be found at http://truffleframework.com/boxes/40T.

Use a baseline JavaScript, React, Angular, or other language to start off with a Truffle box.
You can view the number of downloads for the suite at the dashboard (https:// 

truffleframework.com/dashboard).
Figure 10.15 shows the Truffle Suite Activity Dashboard.
Truffle Suite can be downloaded from https://truffleframework.com/.

Ganache
Ganache CLI is the latest version of TestRPC: a fast and customizable blockchain emulator. It 
allows you to make calls to the blockchain without the overhead of running an actual Ethereum 
node. Transactions are mined instantly.

You can think of Ganache as a personal blockchain for Ethereum development you can use to 
deploy contracts, develop your applications, and run tests. It is available as both a desktop 
application and a command-line tool.

Ganache is available for Windows, Mac, and Linux. Many developers use Ganache to test 
their smart contracts during development. It provides convenient tools such as advanced mining 
controls and a built-in block explorer.



ethereum Development | 301

Drizzle
Drizzle is a collection of front-end libraries that make writing dapp front ends simple, more 
efficient, and more predictable. The main core of Drizzle is based on a Redux store, and you 
access the development tools for Redux. The Drizzle package takes care of synchronization of 
your Ethereum-based services.

Truffle or Ganache?
Deciding when to use Truffle or Ganache can be a bit confusing because the solutions have some 
overlap in capabilities. Here are some tips to help you decide whether to use Truffle or Ganache:

 ◆ Truffle will enable you to develop, test, and deploy your dapp, and it has integration 
with Ganache.

Figure 10.15 
truffle activity  
Dashboard



302 | CHAPTER 10 Blockchain Development

 ◆ Ganache is part of the Truffle ecosystem, and you would use Ganache for the develop-
ment of your dapps. Ganache essentially mimics a real blockchain. You could also pass on 
using Ganache and use Truffle to tie into a public testnet or deploy locally.

 ◆ Once the dapps are developed and tested, you then deploy them on an Ethereum client 
using Geth or Parity.

Open Zeppelin
Open Zeppelin is a well-formatted and prevalent framework of reusable smart contracts for 
Ethereum and other EVM-based blockchains. Open Zeppelin is a library for secure smart 
contract development.

It provides implementations of standards like ERC-20 and ERC-721, which you can deploy 
as-is or extend to suit your needs, as well as Solidity components to build custom contracts and 
more complex decentralized systems.

The reusable smart contracts are useful since they have been reviewed by peers and therefore 
audited. Using a template that would be ready, of course, provides benefits such as shortened 
development time and quicker time to market.

For more information about Open Zeppelin, visit https://openzeppelin.org/.

Private Blockchain Testing
One area of interest for developers is to be able to deploy, test, and validate an application locally 
and not have to connect to a VPN. Or perhaps you are developing applications and want to 
ensure specific variables for the networking are available. You would want to go with a private 
deployment such as Ganache.

Ethereum Tokens
Tokens are created to specific standards in Ethereum called the ERC-20 standards. Tokens in the 
Ethereum ecosystem can represent any fungible tradable item such as loyalty points, metal 
certificates, IOUs, coins, etc.

Tokens implement some basic features in a standard way in most cases, so this means that 
your token would be likely compatible with the Ethereum wallet or any other client or contract 
that uses the same standards.

These tokens will need to follow specific standards, also referred to as constants. Examples 
include the following:

 ◆ Symbol, which is your token’s symbol or ticker

 ◆ Name, which is the name you give it

 ◆ Total supply, which specifies the number of tokens issued

 ◆ Decimals, which are the number of decimals used

The standards are listed at Ethereum.org/token.



hyperleDger Development | 303

Ethereum Request for Comments
An Ethereum request for comments (ERC) is a glorified GitHub issue tracker. This is the main 
point of contact where developers can ask for comments on contracts and other issues related to 
Ethereum proposals. An ERC starts with #1 and increments every time a new issue is opened.

You can find ERCs at https://eips.ethereum.org/erc.

Ethereum ERC Token (ERC-20)
The ERC-20 token contract is the “standard” template to deploy fungible tokens on the Ethereum 
blockchain as a smart contract. The ERC token standard is basically a standard interface as well 
as a sample implementation of the functions necessary to create and operate an ERC-20 token.

Ethereum developers need to be very cognizant of how they develop applications. One way is 
to follow the ERC-20 standards. The ERC-20 standards serve several purposes, but the main 
purpose is focused on portability of the contracts.

Ethereum Improvement Proposals
Ethereum Improvement Proposals (EIPs) have the same format as ERCs but are used to propose 
changes in the Ethereum protocol. EIPs serve the same purpose as Bitcoin Improvement 
Proposals (BIPs). BIPs are used to introduce new features or information important to Bitcoin. 
EIPs start with EIP #1 and increment every time a new issue is opened.

To find out more, visit https://github.com/ethereum/EIPs.

Hyperledger Development
Developing applications in Hyperledger Fabric has some great benefits. The Hyperledger 
ecosystem is robust and well maintained for an open source project. The Hyperledger  
Project leaves little out for options in development and is clearly the most well-managed 
blockchain project.

This section provides a broad idea of what a developer in Hyperledger Fabric would need to 
deal with and develop around.

Chaincode
Chaincode is a smart contract in Hyperledger Fabric and is invoked by a client application 
external to the blockchain network that manages access and modifications to a set of key-value 
pairs in the world state. The world state is the actual state of the current blockchain transactions 
that are recorded immutably.

Chaincode services are secured and lightweight since the environment is deployed as a 
locked-down, secured container. This container has a set of signed base images that contain the 
secure OS and chaincode language, runtime, and SDK images for Golang, Java, and Node.js.

Every chaincode must implement the chaincode interface, which is what is used to provide 
connections similar to an endpoint in cloud computing. The chaincode interface makes it 
possible for the client application to invoke a function that is called in response to the received 
transaction proposals. Chaincode implements the chaincode interface, in particular the Init and 
Invoke functions.



304 | CHAPTER 10 Blockchain Development

Installing Chaincode
When installing chaincode, you should ensure that you have the Go programming language 
installed first and then set up with the correct configuration requirements for your 
deployment type.

You will want to make sure that a directory is created for your chaincode application as a 
child directory of $GOPATH/src/.

The following command will create such a directory called wiley:code:

mkdir -p $GOPATH/src/wiley:code

To enter into the directory, you can use the following command:

cd $GOPATH/src/wiley_code

To create the source file for the chaincode, use the following command:

touch wiley_code.go

Writing Chaincode Considerations
After installing Go and setting up your environment, you then can start developing your 
chaincode.

Note this book will not be teaching chaincode but is organized to provide insight into the 
tasks developers would need to consider around Hyperledger development. Some of these tasks 
are different from Ethereum and worth noting for hiring managers to appreciate.

The next thing you could do is then implement the init function. The init is called during 
chaincode instantiation and will initialize any data as part of the chaincode. Chaincode applica-
tions will implement the two functions that would be invoked via the invoke function.

One area of confusion when setting your platform is around the database options. You may 
need to pay attention to the chaincode design if complex queries are based on an expected 
invocation sequence.

This confusion can occur because an invalid transaction may very well occur if you’re not 
aware of the database options for the state data. The state database could be written in LevelDB 
or in CouchDB.

For tutorial information on getting started with chaincode, refer to the following site:
https://hyperledger-fabric.readthedocs.io/en/release-1.4/chaincode.html

Blockchain Platform Extension
The IBM Blockchain Platform Extension for VSCode helps Hyperledger Fabric developers to 
rapidly develop, provision, and test their chaincode. This also could be used to test client 
applications on their local machines. The extension is currently supported on Windows 10, 
Linux, and macOS.

The extension works by creating a basic smart contract that locally manages an example asset 
in a development language of your choice.

What is really helpful is that the extension provides all the dependencies that are required to 
deploy your smart contract to an instance of Hyperledger Fabric directly. These features enable 
efficient development for your chaincode on the IBM Blockchain service.



hyperleDger Development | 305

To find out more about the VSCode extension, refer to the following site:

https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-develop-vscode

Hyperledger Fabric Consensus Options
Hyperledger Fabric has two consensus options, and it is important to understand the difference 
from a development perspective. You cannot just roll back once you deploy your blockchain.

 ◆ Solo, which is for development, is a single node with no high availability.

 ◆ Kafka is the production version that would be deployed on a live blockchain. Kafka is as 
close to a voting-based consensus as you get in Hyperledger.

As discussed in Chapter 2, consensus methods have different benefits but also cons. For 
example, having more nodes means more time to reach consensus. There’s also a trade-off 
between scalability and performance that developers should be aware of. The Hyperledger 
Fabric white paper on consensus is the main starting point. To find out more, see the fol-
lowing site:

https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_
Paper_1_Consensus.pdf

Hyperledger Fabric Database Options
One of the important things to consider is the power of Hyperledger Fabric with the option of its 
state database. The ledger system in Hyperledger Fabric uses LevelDB, which allows concurrent 
writers to safely insert data into the database by providing internal synchronization.

State database options include LevelDB and CouchDB. LevelDB is the default key-value state 
database embedded in the peer process. CouchDB is an alternative external state database that 
supports binary data.

Table 10.4 shows the options for both the transaction logs and the state database.

Table 10.4: transaction log and state Database options

Transaction Logs State Data (World State)

Type immutable mutable

Operations create, retrieve all cruD

DC levelDB levelDB/couchDB

Attitude embedded in peers key-value paired (Json, binary)

Query simple couchDB for complex (binary)



306 | CHAPTER 10 Blockchain Development

It’s important to note that when assets are stored in the form of JSON documents, CouchDB 
allows you to perform complex queries for assets based on the asset state, for example. There 
really is no learning curve since the queries are formatted just like in CouchDB’s declarative 
JSON querying syntax format.

Client Applications
When developing client applications for blockchains, and specifically Hyperledger Fabric, there 
are some important considerations to design for depending on your specific use case. These 
client front-end considerations include the following:

 ◆ Secure the REST server via a secure protocol (HTTPS).

 ◆ Use authentication options such as a passport through Oath or supported platforms.

 ◆ Use multiuser mode for the REST API service.

 ◆ Understand the complete use case considerations for the blockchain applications.

 ◆ Use the current enterprise key management system (KMS).

 ◆ Use the current software development kits (SDKs) to ensure you’re running the latest 
versions of supported components.

Figure 10.16 shows the different layers of Hyperledger blockchain development. From a 
development perspective, if you are developing a blockchain application that is for the end user, 
that is considered front-end development. In front-end development, there would be develop-
ment applications, wallets, mobile applications, monitoring tools.

Blockchain Network

Chaincode

Chaincode

Web Application

Browsers, Mobile Apps

HTTP Requests

Transactions

Hyperledger Development

Blockchain Application

Peers

Peers

MSP

End User

Figure 10.16 
Front- end application  
workflow



hyperleDger Development | 307

Hyperledger Fabric’s business network archive (package) comprises the model file, chain-
code, access control file, and static query file.

The native query language can filter results returned by using clearly defined criteria. The 
native query language can also be invoked in transactions to perform operations such as 
an update.

Blockchain queries are defined in a query file (.qry) in the parent directory of the business 
network definition.

Events that occur will create notifications of significant operations on the blockchain (e.g.,  
a new block), as well as notifications related to a milestone achieved while processing a smart 
contract/chaincode. The client app can subscribe to this event and take appropriate busi-
ness actions.

Fabric REST Services
The REST server uses a business network card specified during startup to connect to and 
discover the assets, participants, and transactions within a deployed business network. This 
information visibility is required to generate the REST API. The business network card is known 
as the discovery business network card. By default, the discovery business network card is also 
used to handle all requests to the REST API.

Chaincode Services uses Docker to host (deploy) the chaincode without relying on any virtual 
machine or computer language. Docker provides a secured, lightweight method to sandbox 
chaincode execution. The environment is a “locked-down” and secured container, along with a 
set of signed base images containing secure OS and chaincode language, runtime, and SDK 
images for Golang.

Hyperledger includes the REST and JSON RPC APIs, events, and an SDK for applications to 
communicate with the network.

Service Discovery
To execute chaincode on peers, to submit transactions to orderers, and to be updated about the 
status of transactions, applications connect to an API exposed by an SDK. The discovery ser-
vice improves this process by having the peers compute the needed information dynamically 
and present it to the SDK in a consumable manner.

The application is bootstrapped knowing about a group of peers that are trusted by the 
application developer/administrator to provide authentic responses to discovery queries.

A good candidate peer that needs to be used by the client application is one that is in the same 
organization.

Hyperledger Composer
Contributed by IBM and Oxgcains, Hyperledger Composer is an open source application 
development framework that was specifically built for Hyperledger. Composer simplifies the 
creation of Hyperledger Fabric blockchain applications and therefore brings efficiencies into the 
development cycle.

The Composer tool is aimed at helping users to create blockchain applications based on 
Hyperledger Fabric without needing to know the low-level Go programming details that are 
involved in blockchain networks.



308 | CHAPTER 10 Blockchain Development

If you want to build your blockchain application directly on Hyperledger Fabric, you have to 
write your chaincode in Go or Java, which is comparatively different from JavaScript because its 
composer is quite easy to code smart contract using a model file (.cto) and angular JavaScript.

Hyperledger Composer primarily uses JavaScript for chaincode development, and this has a 
lower barrier to entry as well.

Hyperledger Composer uses what’s called connection profiles to define the system to connect to 
a connection profile, which is a JSON document that acts as part of a business network card. The 
connection profile describes a distinct set of components, including peers, orderers, and certifi-
cate authorities in a Hyperledger Fabric blockchain network. A connection profile is normally 
created by an administrator who understands the network topology.

You can use queries to get data about the state of the blockchain. Queries are defined within a 
business network and can include variable parameters. Queries are sent using the Composer API.

Events in Composer are defined in the business network definition in the same way as 
participants or assets. Events are emitted by the transaction processor function once it has been 
defined. An event indicates to external systems that something important has occurred on the 
ledger. Applications subscribe to emitted events using the Composer client API.

Developers of the business network can create a set of access controls. Access controls are 
rules that determine which assets participants have access to in the business network and the 
conditions in which they can access them.

A historian is a specialized type of registry that records successful transactions conducted on 
the business network.

Hyperledger Composer Modeling Language
Hyperledger Composer is an object-oriented modeling language that defines the domain model 
for a business.

The modeling language is saved as a .cto file. The CTO file contains the following:

 ◆ A single namespace, in which all resource declarations are implicit

 ◆ A set of resource definitions that includes assets, transactions, participants, and events

 ◆ The option to import resources from other namespaces

There is a system namespace that contains base definitions of the asset, event, participant, and 
transactions. These base definitions are abstract types that are implicitly extended by all new 
assets, events, participants, and transactions.

Events and transactions in the system namespace are defined by an eventID and transactionID, 
respectively, and a timestamp.

The system namespace also includes a historian, which is a specialized registry that records 
successful transactions on the blockchain, as well as the participants and identities that submit 
transaction requests.

Hyperledger Composer Resources
In Composer, resources are considered one of the following:

 ◆ Assets, participants, transactions, and events

 ◆ Enumerated types

 ◆ Concepts



hyperleDger Development | 309

Here is an example of Vehicle as a super-type and Car as an asset with a set of parts:

asset Car extends Vehicle {
o String model
--> Part[] Parts

In Composer, concepts are abstract classes that are not considered an asset, participant, or 
transaction. Concepts would need to be clearly defined because of this abstract quality. A mode 
of transportation could be a car, motorcycle, plane, boat, or any other mode of transport. We need 
to accommodate the possibility that a concept is abstract by adding strings and declaring the 
concepts to the code.

The following code shows how to identify New York as a string in the program. This code is 
extending the possibility of New York City being either a street, a city, or a state in the United 
States. A concept then is added to address the possibility of New York City also being a street, 
city, or state in Canada.

Address {
o String street
o String city default = "New York"
o String country default = "US"
o Integer[] counts optional
}
concept CanadaAddress extends Address {
o String zipcode
}

Other programming areas that Composer can address include arrays, primitives, field 
validators, relationships, imports, and decorators.

Hyperledger Composer Playground
Hyperledger Composer Playground, a free sandbox maintained by IBM, provides an environ-
ment that quickly models and tests a blockchain network. Composer Playground has a simple 
GUI to edit and test the business blockchain network. Playground simplifies what is normally a 
complex blockchain network for running blockchain testing.

There is both an online version and an offline version of Playground. The online playground 
runs the business network in browser memory, and the local playground is deployed in 
Hyperledger Fabric instances.

We can use Hyperledger Composer or Composer Playground to develop, test, and validate 
our blockchain ideas by deploying a new business network to Hyperledger Fabric. Composer is 
not a live blockchain and is exclusively focused on preproduction use cases.

Figure 10.17 shows the Hyperledger Composer Playground login prompt.
Composer Playground is currently available at https://composer-playground 

.mybluemix.net/.
Hyperledger Fabric v1.4+, which should feature significant improvements to the developer 

experience, will include a new programming model. Note that Composer Playground will likely 
be deprecated in the future, but no clear road map has been released at the time of writing.



310 | CHAPTER 10 Blockchain Development

R3 Corda Development
Corda is written in Kotlin and is compatible with any JVM language. Kotlin is an odd language 
to some programmers who prefer Scala, for example. Kotlin does have a better type inference, 
better generics with type variance, and a more modern syntax.

The two most popular languages for Corda development are Java and Kotlin. The real key is 
that it has great flexibility and interoperability with Java in both directions in programming 
perspectives.

R3 Corda is primarily focused on implementing solutions for regulated financial services. 
Therefore, the development of Corda solutions often involves many types of financial assets. 
Some of the common financial assets that are defined in Corda contracts include the following:

 ◆ Cash

 ◆ Stocks

 ◆ Bonds

 ◆ Futures

 ◆ Credit letters

 ◆ Derivatives

 ◆ Interest rate swaps

A financial transaction is an agreement between buyer and seller parties to exchange one  
or more asset for payment of monetary value. This is essentially the focus of the smart 
 contracts in Corda.

Figure 10.17 
hyperledger Fabric 
playground login



r3 corDa Development | 311

When developing in Corda, there two main types of assets.

 ◆ Fungible assets, which are homogenous and are divisible, mergeable, and interchangeable

 ◆ Nonfungible assets, which are unique and represent something that is not divisible, 
mergeable, or interchangeable

I won’t cover the business part of the house for the assets, so you may want to research more 
if this is of interest.

Corda Consensus Model
Consensus in Corda is handled somewhat differently in some respects from other blockchains in 
that the unit of consensus in Corda is the state that can be handled in two distinct parts. In other 
blockchains state is considered less flexible—state meaning the current transaction view of the 
blockchain. Consensus in Corda is broken into two distinct parts: consensus over state validity 
and consensus over state uniqueness.

 ◆ Consensus over state validity is when the blockchain members reach certainty that a 
transaction is accepted by the contract’s states and has all the required signatures.

 ◆ Consensus over state uniqueness is when the blockchain members reach certainty that the 
output states created in a transaction are actually unique and not previously consumed.

Corda has pluggable uniqueness services to improve privacy, scalability, legal-system 
compatibility, and algorithmic agility.

Pluggable uniqueness services in Corda with the use of shared cryptographic hashes ensure 
that restrictive viewing of transactions provide for the scalability and privacy required.

For more information on the Corda consensus model, refer to the following:

https://docs.corda.net/releases/release-M9.2/key-concepts-consensus-
notaries.html

CorDapps
Developing applications in Corda revolves around the CorDapp (Corda distributed app) and 
how you define the business logic. The customer’s main objective of any CorDapp is to allow 
participants to reach an agreement about transactions to the globally distributed ledger.

CorDapps achieve this main objective by defining flows (workflows) that Corda node owners 
must invoke via RPCs. It is important to note that the core of contracts in Corda is an executable 
program that authenticates changes to all state objects in Corda transactions.

CorDapps consist of the following software components:

 ◆ States define the facts over how an agreement will be reached.

 ◆ Contracts define what constitutes a valid global ledger update.

 ◆ Services provide the functions of the node—for example, what the node role is, such 
as a notary.



312 | CHAPTER 10 Blockchain Development

 ◆ Flows specify the entire life cycle of state changes by invoking the smart contract that is 
consistent and related to the current state.

 ◆ Service hubs maintain services and support APIs for accessing and controlling many 
aspects of the Corda platform from within server-side CorDapps code, not RPC 
client- side code.

 ◆ Client RPC operations are remote procedure calls.

Corda Network and Nodes
A Corda network consists of a number of machines running nodes, including a single node 
operating as the network map service. These nodes communicate using persistent protocols in 
order to create and validate transactions.

A Corda network is a connected graph. There is no global broadcast. The network maintains 
point-to-point and nonpersistent connections and supports AMQP/1.0 over TLS. Corda runs on 
a semiprivate permissioned network.

A Corda node is a process that runs with a Java virtual machine (JVM). The Corda node’s 
properties consist of several types of services and support custom functionality such 
as CorDapps.

Nodes interact with each other following the flow framework, which reflects the business 
logic of the proposed transaction, and the custom functionality, which is dictated by the 
CorDapps. After the flow framework has been verified and completed, the transaction is 
committed to the ledger.

To set up Corda nodes, you should use the templates provided by Corda. These templates are 
available in Kotlin and Java from GitHub (https://github.com/corda).

When you are done setting up the Corda templates, you then would need to set up the 
network with a number of participants (nodes) by configuring the XML file.

Corda Service Hub
Corda nodes have something unique in the blockchain world—a service hub. The service hub 
maintains services and supports APIs for accessing and controlling many aspects of the Corda 
platform. All this is performed from within the server-side CorDapps code, not the RPC 
client- side code.

Think of the service hub as the starting point for most operations that are performed inside a 
node. The service hub also defines how nodes access services internally by three distinct ser-
vice calls.

The CorDapps are what actually defines how a node owner interacts with a node. Of course, 
APIs are required to provide for the required operation on a Corda node. There are also a full 
suite of unique API calls that developer would want to review and test before deploying an 
application.

For more on the API categories, refer to the following:

https://docs.corda.net/api/kotlin/corda/net.corda.core.node/-service-hub/
index.html



r3 corDa Development | 313

Corda Doorman
Corda networks are semiprivate and have a doorman service that enforces rules regarding the 
information that nodes must provide and the know-your-customer processes that they must 
complete before being admitted to the network.

A node must contact the doorman and provide the required information. The doorman will 
give the node a root-authority-signed TLS certificate from the network’s permissioning service.

Corda Flows
Flows are used to model business processes between parties exchanging assets. Flows are what 
would be called a bilateral agreement, which is between two parties. There is no way that you 
can invoke smart contracts directly in Corda; therefore, you must write a flow, which specifies 
the entire life cycle of state changes. The flow does this by invoking the smart contract that is 
related to the current state.

Client RPC
A client remote procedure call is a protocol that the client’s blockchain program uses to request 
blockchain access from a program that is located on a remote Corda node.

RPCs are used to ensure that the application can communicate without having to fully dictate 
or understand the blockchain network’s details. An RPC is also known as a function call or a 
subroutine call, which uses a client-server platform. The node in Corda owner can interact with 
the node via a client RPC.

From a development perspective, the node owner does not have direct client-side access to 
Service Hub APIs. For developers to interact with a node, they need to write a client in a JVM- 
compatible language using the CordaRPCClient class. There are also a number of dependencies 
and permissions developers would need to address.

For more information, please refer to the following:

https://docs.corda.net/clientrpc.html

Oracles
An oracle is a trusted external source of factual and final information. A fact can be included in a 
transaction as part of a command. An oracle service can be used to access or validate off-ledger 
data. An oracle will sign a transaction only if the included off-ledger fact is actually true from its 
point of view. For example, an oracle service can be used to sign the transaction to ensure the 
exchange rate being referenced is correct at a certain point in time.

In a nutshell, an oracle is a trusted service that can provide that capability in a controlled and 
deterministic manner for exchanges.

Corda DemoBench
DemoBench is used to run a multiple-node Corda network on a local development machine. R3 
Corda DemoBench is available for both Windows and macOS as a free download at the Corda 
download site. Developers should start by using DemoBench to get a feel of how a CorDapp 
would work from a user perspective and then dive into the JVM.

Figure 10.18 shows the view in DemoBench when a network is deployed.



314 | CHAPTER 10 Blockchain Development

DemoBench writes a log file to the following locations:

 ◆ macOS/Linux: $HOME/DemoBench/demobench.log

 ◆ Windows: %USERPROFILE%\DemoBench\demobench.log

Figure 10.19 shows the log files in a Corda DemoBench JVM.
You can download Corda DemoBench from https://www.corda.net/download.html.

Figure 10.18 
DemoBench

Figure 10.19 
DemoBench logs



Quorum Development | 315

Quorum Development
Quorum is an open source private blockchain network developed by JP Morgan directly from the 
Ethereum code. This blockchain is a fork of the Ethereum blockchain.

Ethereum developers will have no real significant learning curve to become proficient in the 
platform. Quorum development is similar to Ethereum, so I won’t cover the redundant areas 
again for Quorum. I will focus on the similarities and major differences between Quorum 
and Ethereum.

Quorum’s main distinguishing feature is the fact that it allows private transactions between 
the parties. It does this over a private deployment of Ethereum, not on the Ethereum mainnet.

Quorum introduces an interesting new consensus algorithm called Raft. Similar to proof of 
stake (POS), Raft does not require calculation of a hash and validates blocks/transactions in 
under 0.5 seconds, which is fast for a blockchain. However, this speed comes at a cost to security 
since it has no Byzantine fault tolerance. Basically, if this consensus is used, the security has to be 
provided by the entities themselves to ensure that their nodes are not accessible to an attacker.

Quorum offers more consensus mechanisms that in the long run will allow Byzantine fault 
tolerance, such as Quorum Chain, which is programmable through a smart contract and is 
intended to enable programmable consensus logic.

Quorum allows transactions to be carried out privately between network participants and 
allows a transaction to be visible only to a specific group of participants.

The data of the private transactions never reaches nonparticipating nodes, since instead of 
using blockchain communication to send the data, a point-to-point network is used, which works 
together with the blockchain and allows data to be sent from one node to another, called/
provided by Constellation. This data is verified in the blockchain by means of its hashes, but the 
data is never sent via the “open” network.

Quorum vs. Ethereum
From a development perspective, Quorum uses the same core as Ethereum. They share the same 
smart contract development language, Solidity.

However, there is a difference in regard to the computation pricing where the gas system is 
concerned. The Quorum network developer doesn’t have to worry about having enough gas to 
interact with the contracts. Developers do not need to worry about gas because Quorum is a 
private blockchain and doesn’t use gas. Wallets are not used in Quorum as they are in Ethereum.

However, Quorum does maintain an execution gas limit per transaction. This is to prevent 
someone from launching a code that could take the validators too long to process and effectively 
induce a vulnerability into the chain.

Quorum Cakeshop
Cakeshop is an SDK that has APIs for creating, managing, and integrating Ethereum-like ledgers 
such as Quorum. It is packaged as a Java web application archive (WAR) that you can run on 
Docker containers. Cakeshop has an intuitive graphical user interface and is fairly intuitive  
to use.



316 | CHAPTER 10 Blockchain Development

Cakeshop downloads the latest version of Quorum and the boot node from Geth. This 
Cakeshop package includes the transaction managers, a Solidity compiler, and all the needed 
dependencies.

For more information on Cakeshop, visit https://github.com/jpmorganchase/cakeshop.

Blockchain Performance
Blockchains are generally technologies that are distributed and decentralized, and they can be 
fast. For example, a blockchain could be faster than another blockchain if you removed nodes. 
However, when you remove nodes, you effectively mitigate security or decentralization.

It’s important to note that a blockchain, like any other technology, cannot be everything at 
once, and therefore a compromise in the constraints must be made. This compromise is similar to 
how a project manager would handle project constraints. For example, in a project you could 
reduce the time to completion by investing more in labor, which may get your project completed 
earlier. The other side is that by adding more labor, you effectively increase your cost constraints.

In blockchain projects, constraints are no different from a compromise perspective, and it’s a 
give-and-take consideration to what your blockchain application would realize from a security, 
speed, or decentralization perspective. Want better performance (faster transactions)? Then 
reduce the number of nodes but also centralize the nodes more. By improving performance, you 
could very well impact decentralization as well as change your security posture.

As shown in Figure 10.20, the project management triangle (aka triple constraint) comprises 
three constraints.

 ◆ Time refers to the schedule allotted to the project.

 ◆ Cost refers to the budget for licenses, hardware, and manpower, both internal 
and external.

 ◆ Scope refers to the amount of functionality to be delivered in the project.

Projects need to adjust one of the three constraints to make up for another. Generally, the 
project sponsor will determine which two to excel at, and the third will have to be adjusted to 
meet the initial two constraints.

Triple Constraint

Scope

Tim
e Cost

Figure 10.20 
triple constraint



Blockchain perFormance | 317

Now let’s discuss blockchains. As previously mentioned, blockchains are decentralized, are 
secure, and can be fast relative to other blockchains. These three constraints are a choice, and the 
customer would need to choose.

Blockchains can effectively maintain two of three properties (constraints) where one property 
is effectively compromised to provide a different result for another property. These three 
properties (constraints) are

 ◆ Speed (fast)

 ◆ Secure

 ◆ Decentralized

Figure 10.21 shows the blockchain paradigm. Ideally, blockchains would meet all our expecta-
tions. However, we don’t live in a perfect world, so developers need to determine what these 
properties really are and how they affect our blockchain implementation.

The following are the common properties developers want to measure or adjust in our 
blockchain performance requirements:

 ◆ Speed—The blockchain must provide for prompt processing, which should result in 
higher transactions per second (TPS). Speed is also referred to as how “fast” a transaction 
could occur. Note that “speed” or “fast” is relative only as compared to other blockchains. 
Comparing blockchains to client-servers is not relative here.

 ◆ Security—Generally, a certificate manager handles these encryption certificates. In most 
blockchain networks, X.509 certificates are commonly used to maintain these certificates. 
For example, in Hyperledger Fabric there is what is called a certificate authority. 
Permissions are also important to consider since they directly affect access to resources. In 
most permissioned blockchains, there would be permissioning, which means that there is 
centralized control over what users or applications have access to the blockchain 
resources.

 ◆ Decentralization—This is true in the permissionless blockchains, such as Ethereum. 
However, Hyperledger, Corda, and Ripple are centralized platforms.

Blockchain Paradigm

Decentralization

Sp
ee

d

Security

Figure 10.21 
Blockchain paradigm



318 | CHAPTER 10 Blockchain Development

To be fair, some blockchains, such as Ripple, state they can process around 1,500 TPS, and 
Hyperledger Fabric, in a perfect world, could process up to 3,500 TPS. However, these numbers 
are based on some kind of compromise.

Bitcoin’s TPS is continually varying. In its current form, the network doesn’t support more 
than 7 TPS, and Ethereum is not much better at around 14 TPS. The performance of Bitcoin and 
Ethereum, for example, is a direct result of the global scale, Internet reliance, and transaction 
workloads. More transactions increase the workload of all production blockchain nodes in 
Ethereum and Bitcoin, which effectively have to update their ledger for every transaction.

Table 10.5 compares some of the common blockchains and legacy services.

The “Notes” reference how a transaction is actually processed and then ingested from the 
application. Transactions that are sent from a client application to the server’s processor applica-
tion are push transactions. Transactions that are pulled from the client application are pull 
transactions. Push, pull, and hybrid transactions are client-server applications, which typically 
are decentralized. Transactions that use both push and pull processes in the application are 
considered hybrid. Transactions that are processed on the blockchain nodes and processed by 
each node are considered P2P transactions. Blockchains that are processed in a P2P transaction 
platform are the native forms of blockchain transactions.

Permission or Permissionless Performance
Perhaps the real trade-off around performance is between permissioned and permissionless 
blockchains. Permissioned blockchains can generally perform better since they have fewer nodes 
in the blockchain network, and the nodes are centralized or localized. Performance is relative to 
the number of nodes.

For example, it has been stated that Hyperledger Fabric could theoretically reach 3,500 TPS. 
Of course, this number is in a perfect world, and it is well known that Hyperledger Fabric overall 
does not scale well from a performance perspective. Adding mode nodes and peers will substan-
tially drop the TPS. When you add nodes that are not localized, you can expect the network 
latency to also reduce your TPS.

In the case of permissionless blockchains such as Ethereum, developers know that perfor-
mance should not be an expectation. Permissionless blockchains are generally widely distributed 
with typically hundreds of nodes as well. The user base can be dependent on sporadic behav-
ior—for example, in the world of Bitcoin, activity can spike when there is an event in China or 
when the United States makes a statement about regulating cryptocurrency.

If performance is part of your use case requirements, then permissionless blockchains are out 
of the question.

Table 10.5: transactions per second (tps) comparisons

Visa BTC Ripple PayPal Hyperledger

TPS 24,000 4 1,500 193 3,500

Control centralized Decentralized centralized centralized centralized

Notes push p2p hybrid hybrid p2p



Blockchain perFormance | 319

Performance Testing
When it comes to performance testing, the main focus is transactions per second (TPS). Another 
factor is the size of the transactions. For example, a larger block size may not perform as well as a 
smaller block size.

Performance testing is generally accomplished through what is considered to be nonfunc-
tional testing. Nonfunctional testing is a focused area that is mainly technically driven. Some 
technical areas that could be tested include the following:

 ◆ Network latency and bottlenecks

 ◆ Block size adjustment

 ◆ Signatures removed or included

 ◆ Sequencing of transactions

There seems to be a limited number of performance testing tools. However, there are a few 
solid choices depending on your platform. Ethereum has most choices available at the time 
of writing.

Ethereum Testing Tools
There are numerous tools for Ethereum application development. It is important to note that in 
varying degrees when testing your Quorum blockchain applications some Ethereum tools could 
be made to work. At the time of writing, there are no testing tools for Quorum. From a testing 
perspective with Quorum you would want to ensure that you direct your tests to your localhost 
or a custom RPC.

The following are three common tools used in Ethereum testing:

Ethereum Tester Ethereum Tester supports two distinct data formats that enable both 
front-end and backend testing. There is a significant installation process and some 
 dependencies to deal with.

On GitHub, visit https://github.com/ethereum/eth-tester.

Truffle Truffle is a battle-tested Ethereum development framework that you really have to 
know to develop in Ethereum. It has a great testing capacity built in as well. For example, you 
can write automated tests for smart contracts in JavaScript and Solidity and get your contracts 
developed quickly.

To find out more about Truffle Suite, visit https://www.trufflesuite.com/.

Ganache Ganache has the most popular library for Ethereum testing. Formerly known as 
TestRPC, Ganache is used to test Ethereum smart contracts locally—that is, it spins up an 
instance on your desktop/server and simulates a live blockchain.

You can learn more about Ganache at https://www.trufflesuite.com/ganache.

Hyperledger Fabric Testing Tools
Hyperledger Fabric has some specific tools that can be used for testing. Hyperledger Composer 
currently is the most common tool used for Hyperledger development and testing. Hyperledger 
Composer is available for a local deployment using Docker containers, or you can use the web 
version called Hyperledger Composer Playground.



320 | CHAPTER 10 Blockchain Development

Hyperledger Composer is an open source development tool that contains many functions to 
help build blockchain applications. Some of those features also help with testing. At the time of 
writing, Composer supports interactive testing, automated unit testing, and automated sys-
tem testing.

Composer has a command-line interface that enables you to run interactive “smoke tests” that 
can ensure the deployment would be successful. This also makes it easy to execute tests in a 
continuous integration/continuous delivery (CI/CD) pipeline.

Continuous integration (CI) is a process whereby a developer’s working copies are synchro-
nized with a shared pipeline several times a day. Continuous delivery (CD) is the next process 
after continuous integration and enables placing a product into production, which historically is 
a manually driven process. Continuous deployment, the next logical next step after continuous 
delivery, automatically deploys the product into production after quality assurance (QA).

Blockchain Integration and Interoperability
Blockchains are increasingly providing much more value by either going off chain or cross- 
chaining. Moving value from one blockchain to another blockchain is actually somewhat of a 
new approach even in blockchain’s short history.

Before the idea and implementation of cross chains, developers be using an off-chain 
approach through a cryptocurrency gateway to exchange value. The main headache with that 
approach was that these gateways were centralized exchanges and could pose some concerns to 
privacy, costing, control, and performance.

A thin client generally only presents processed data provided by an application server, which 
performs the bulk of any required data processing. A device using web applications is a thin 
client, and generally these blockchain applications can be enabled by thin clients.

To integrate the blockchain with any traditional systems or with a front end that will allow 
our clients to interact with it in a user-friendly way, developers must use the client libraries 
available for the various “traditional languages.”

Generally, the blockchain technologies communicate through RPC/HTTP and a client library 
for NodeJS or another library. Blockchain technologies exchange payments and digital assets. The 
ability to transfer and exchange digital assets originating from another blockchain without 
trusted intermediaries can be accomplished through the use of notary schemes, relays, and 
hashed time locks.

Vitalik Buterin, cofounder of Ethereum, noted that there are three primary methods to 
achieving true interoperability for a blockchain.

 ◆ Notary schemes, which are an exchange of arbitrary data such as how to connect the 
blockchain to another blockchain. This is commonly referred to as federation of block-
chains. An example would be a company such as Blockstream that provides a medium for 
transfer from one network to another network.

 ◆ Relays provide for the exchange of arbitrary data via what is a gateway or data exchange. 
Some vendors refer to relays as a relay chain. A relay or relay chain is used to provide a 
gateway from one blockchain to another blockchain. BTCRelay is the most widely known 
relay and acts as a bridge between Bitcoin and Ethereum blockchains.

 ◆ Hashed time lock contracts (HTLCs) provide for the exchange of digital assets via a 
cross-chain atomic swap. HTLCs can provide for bidirectional payment channels between 
digital assets on specific blockchains. The most prominent example is the Bitcoin 
Lightning Network.



Blockchain integration anD interoperaBility | 321

Generally, whether a blockchain uses any one of the preceding methods is really dependent 
on the level of federation required, off-chain or side chain requirements, as well as any number of 
other factors.

Data Exchange Methods
The terms sidechains and payment gateways are commonly used interchangeably in the blockchain 
industry. However, they are quite different. A sidechain is a separate blockchain that is attached 
to a parent blockchain using what is called a two-way peg. This two-way peg enables the inter-
changeability of assets at a predetermined rate between the parent blockchain and the sidechain. 
In simple terms, it’s an exchange.

The original blockchain is usually referred to as the main chain, and all additional blockchains 
are referred to as sidechains.

Common sidechains that are in production mode include Rootstock and Liquid.
Rootstock (RSK) appears to be the most widely used and has created an open source testnet 

called Ginger for its sidechains. RSK has a two-way peg with the Bitcoin blockchain and rewards 
Bitcoin miners via merged mining. RSK’s main goal is to enable the Bitcoin blockchain to have 
smart contract capabilities and make these integrated payments more efficient.

Liquid is a sidechain created by a blockchain startup called Blockstream. Liquid enables the 
instant movement of funds between cryptocurrency exchanges, and it’s very efficient. There is 
really no waiting for the confirmation in the Bitcoin blockchain.

Hash Timed Locks
An HTLC is a class of blockchain-based payment system that uses hash locks. Time locks require 
the receiver of a payment to either acknowledge receipt prior to a deadline or basically forfeit the 
ability to claim the payment and then return it to the payer.

HTLCs allow for cross-chain atomic swaps, which means, for example, a sender could pay in 
Bitcoin, but the receiver could choose Litecoin as payment. The hashed time locks are fully 
funded bidirectional payment channels between assets on the specified blockchain platforms.

In the case of the Lightning network, it is a decentralized micropayment solution on top of the 
Bitcoin blockchain.

Relays and Gateways
A relay is effectively a way to interface a contract exchange between two different blockchains. 
Relays are also referred to as gateways or payment gateways.

The most prominent relay is BTC Relay, which allows Ethereum contracts to securely verify 
Bitcoin transactions without any intermediaries.

BTC Relay is an Ethereum contract that stores Bitcoin block headers only. It uses these block 
headers to build a mini version of the Bitcoin blockchain. The main benefit is that it allows 
Ethereum dapp users to pay with Bitcoin to use Ethereum dapps directly.

Some relays allow for a one-way exchange, and some allow for exchange both ways. For 
example, in BTC Relay, the exchange is one way, whereby the user can pay for Ethereum by 
using Bitcoin, but not the other way around.

For more on BTCRelay, refer to http://btcrelay.org/.



322 | CHAPTER 10 Blockchain Development

Summary
This chapter covered various development challenges, best practices, programming models, and 
frameworks.

Solidity is a newer but simple programming language that is popular among Ethereum 
developers. Other widely used development languages include C++, Java, Golang, and Rust. 
Blockchain developers experienced in these languages are on their way to blockchain success.

Ethereum development requirements should be reviewed before developing on Ethereum. 
You learned about Truffle, Ganache, MetaMask, testnets, and several areas of development focus 
on Ethereum.

Hyperledger development tools include Hyperledger Composer, an object-oriented modeling 
language that defines the domain model for a business network definition.

Hyperledger Fabric uses LevelDB as the database for the state database, but you may want to 
consider the option to configure peers to store database transactions in CouchDB.

The two most popular languages for Corda development are Java and Kotlin. The real key for 
using these languages is their great flexibility and interoperability with Java in both directions.

Quorum is an open source private blockchain network developed by JP Morgan from the 
Ethereum code. Ethereum developers will have a short ramp-up time to develop on the Quorum 
blockchain.

There are various aspects of interoperability and integration—such as hash locks, payment 
gateways, and sidechains—to consider when blockchain requirements call for different 
blockchains.



Chapter 11

This chapter covers the basics of how blockchains fit into the overall picture of IT security. The 
chapter’s main mission is to focus on blockchain security, so if you are not familiar with IT 
networking or IT security best practices and concepts, you may need to follow up with other 
resources.

I will cover many of the vulnerabilities in the threat landscape that a blockchain network 
could be exposed to, including DDOS attacks and 51 percent attacks. The focus will be on 
Ethereum, Corda, Hyperledger, and Quorum.

I will discuss how hashing, encryption, and decryption play into blockchain security. Risk 
assessments and risk mitigation also will be covered in detail.

I will then cover security concerns surrounding smart contracts, including legal enforcement 
and legal prose.

Lastly, I will dive into each enterprise blockchain security-related feature and discuss the most 
common aspects of the blockchains that can affect security and privacy.

Blockchain Security Basics
A blockchain is essentially a distributed ledger that in most cases should be immutable—that is, 
the information (transactions) that is written to the ledger cannot be modified or deleted. This 
feature of a blockchain provides some distinct advantages over a traditional centralized database. 
For example, a centralized database could be tampered with.

A traditional database is centralized, meaning the control of data is managed by a central 
authority. The distributed ledger is different than the approach for deployment since it is a 
distributed database and not centralized. In a decentralized database, the data is not only kept in 
one location but generally replicated to all other nodes in the network, which could be located all 
over the world. For example, the Ethereum distributed ledger is on a worldwide computer 
network with other devices. Because it’s on a shared network, it should be expected to have the 
potential of being exposed to network vulnerabilities and for that matter even concerns around 
privacy, security, and availability.

In regard to blockchain security, we need to consider the technology it has been derived from 
in a holistic manner. Blockchains are not built from one technology but from multiple technolo-
gies, which can expose the blockchain nodes to different threats. These threats could be malware, 
network attacks, data theft, and a multitude of other issues that you likely already deal with in 
the realm of traditional IT.

Blockchain Security and 
Threat Landscape

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



324 | CHAPTER 11 Blockchain Security and threat landScape

Blockchains are built from three distinct technologies.

 ◆ P2P networks, which can be exposed to distributed denial-of-service (DDoS) attacks 
wherein a node’s buffer is overflowed, for example

 ◆ Private/public key encryption, which can be cracked through the use of reverse engineer-
ing or through flaws that affect keys generated for the RSA and OpenPGP algorithms

 ◆ Programs (smart contracts), which use development languages such as JavaScript, Golang, 
and C++, which have their own unique vulnerabilities, threats, and concerns

Because these technologies all have their own specific vulnerabilities, it’s important to under-
stand the technologies involved in order to address any possible vulnerability of the blockchain 
ledger and the components of the network, development languages, client applications, etc.

Confidentiality, Integrity, and Availability
The CIA triad is a well-known staple in the world of IT security. It is one of the oldest and most 
popular security frameworks connected with IT security, and it certainly should be used with 
blockchain as well.

As shown in Figure 11.1, the CIA triad comprises three main components.

 ◆ Confidentiality—The information cannot be understood by anyone other than for whom 
it was unintended

 ◆ Integrity—The information cannot be altered in storage or transit between sender and 
intended receiver without the alteration being detected

 ◆ Authentication—The sender and receiver can confirm each other’s identity and the 
origin/destination of the information.

The CIA triad model’s main goal is to help organizations to structure their security posture 
appropriately.

One area of concern is around consortium networks where potential competitors are partici-
pating on the same network as your company. One way to mitigate concerns around privacy or 
confidentiality is to enable blockchain channels between peers that are not visible to all members 
of a consortium network.

Data confidentiality can also be potentially hidden using cryptography or more advanced 
zero-knowledge proof schemes that may not be available in all blockchains. For example, if your 
enterprise does not use channels for privacy, then another competitor on the same blockchain 
network may gain insight into your transactions between other peers in the consortium block-
chain. These transactions could provide your competitor insight into what your company is 
doing and therefore bring competitive advantages. When properly implemented on a blockchain 
network, channels provide confidentiality.

Integrity

Availability

Co
nfi

de
nt

ial
ity

Figure 11.1 
The cia triad



Blockchain Security BaSicS | 325

Implementing confidentiality is not really possible on a permissionless blockchain. However, 
it’s more than reasonable to implement and expect privacy on Corda or Hyperledger Fabric since 
these platforms are membership based.

Hyperledger Fabric implements confidentiality differently by leveraging different consensus 
methods in its architecture through the use of an execute-order-validate consensus approach. 
Hyperledger Fabric also supports channels natively. These channels are private channels that 
provide confidentiality on a shared blockchain infrastructure such as a consortium blockchain.

Blockchain Best Practices
As with just about anything IT related, there are best practices to consider when implementing, 
managing, or securing your blockchain. This section focuses on three areas: high-level best 
practices, software development best practices, and wallet best practices.

High-Level Best Practices
Here are some common high-level best practices your enterprise should consider with your 
blockchain project for ensuring security, privacy, and confidentiality:

 ◆ Implement the blockchain vendor best practices focused on blockchain security for the 
development of the smart contracts. (Corda, for example, has detailed documentation.)

 ◆ Implement vendor best practices for crypto wallets if applicable for your enterprise 
environment.

 ◆ Prevent access to only those members that require access with close adherence to the least 
privilege best practice.

 ◆ Deny all attempts to change data or modify your client applications without a review process.

 ◆ Guard your encryption keys with solid security standards so they are not compromised.

 ◆ Document a concise membership policy with acceptable rules and a permissioning process.

 ◆ Implement decentralized identity as an approach to mitigate password-related concerns.

 ◆ Train your developers and blockchain users on best practices for IT security.

 ◆ Audit your blockchain applications, networks, and nodes routinely for appropriate 
membership but likely vulnerabilities.

 ◆ Read all vendor or consortium documentation before implementation and after imple-
mentation and subscribe to the appropriate security bulletins and blockchain newsletters. 
If your blockchain has paid support, then contact your vendor for additional help.

Ethereum, Hyperledger, Corda, and Quorum will have different recommended best practices 
and instructions for implementing specific services. Following the vendor or the consortium 
documentation should be the first step when designing a secure blockchain for your enterprise.

Software Development Best Practices
Developing your blockchain services such as smart contracts or the client applications that use the 
blockchain with a development approach that follows best practices can certainly provide value. The 
value provided could be around reducing risk in both your development and deployment cycles.



326 | CHAPTER 11 Blockchain Security and threat landScape

As a previous developer who has worked in numerous enterprises, I feel you can benefit by 
adhering to some common best practices.

The best way to remove security threats or vulnerabilities is to actually identify them during 
the development process. Identifying vulnerabilities after the development process, such as in the 
production modes, means that your blockchain has been deployed with vulnerabilities. Results 
are based on whether you are proactive or are reactive in the software process, such as DevOps.

An agile DevOps-focused environment is clearly the most effective when properly invested in 
by the enterprise to mitigate rookie mistakes in development.

The following are the most common best practices I recommend for securing your code 
development resources. Also included are ways to reduce your enterprise’s risk to security exploits.

 ◆ Use a software development lifecycle (SDLC), such as Agile, to facilitate best practice 
processes to design, develop, and test high-quality software programs.

 ◆ Implement a DevOps-based operation. In the simplest terms, DevOps represents the 
intersection of two large trends in software development: Agile development and Lean 
operational processes. Agile software development promotes the collaboration of the 
whole enterprise and even can involve customers as part of the processes.

 ◆ Audit your smart contracts effectively, as smart contracts in most blockchains are immuta-
ble and cannot be deleted or modified later. The audits should be performed on a release 
candidate (RC), the final stage before software is launched.

 ◆ Manage your smart contract releases in an effective software release lifecycle such as a 
release candidate (RC).

 ◆ Remove code churn by performing an audit on a release candidate (RC). This can be done 
by using a mainnet address, which is your production network, and then comparing the 
release candidate with your development network, which is your testnet. Code churn is a 
common practice to measure the performance of both the developer and the code they 
turn out, which can affect the value of code/program. You can use a free tool called 
Gitprime to obtain this insight. Gitprime offers a wealth of features to visualize the data.

 ◆ Validate your source code to ensure the “validated” build is uploaded from the proper 
repository and is a secure copy. Use a source code validator tool to verify that source code 
matches the bytecode at the specific address that is required for deployment and matches 
the compiled output from source code. One tool that is used for source code validation 
with Ethereum development is called the Ethereum Bytecode Verifier.

For more on blockchain development best practices, refer to Chapter 10, “Blockchain 
Development.”

Wallet Best Practices
Some security-related best practices revolve around how you store your private keys and how 
you secure your blockchain wallets. Wallets are, of course, a requirement to maintain in 
Ethereum development so that your developers will be able to develop, test, and integrate smart 
contracts into your token platforms. Protecting these wallets and the keys is critical because 
Ether, when stolen or lost, is not likely going to be recovered. Losing your Ether wallet private 
keys could also be a costly way to lose your Ether tokens.



Blockchain Security BaSicS | 327

You should consider the following best practices:

 ◆ Restrict unsupervised access with Ethereum wallets whether on a web-based wallet or a 
hardware wallet.

 ◆ Provide a strict acceptable user policy (AUP) that ensures strong passwords are maintained.

 ◆ Close all network ports that do not need to be open and maintain a strict firewall. A 
network assessment should identify the ports.

 ◆ Practice frequently changing address schemes with your Ethereum wallet transactions. A 
common practice is to use a different address for every transaction. This can reduce 
brute-force guessing attempts.

 ◆ Configure multiple signatures (Multi-sig) with your private keys to deter most common 
breach attempts.

 ◆ Perform audits on your Ethereum wallet balances and your user base to ensure the 
security procedures are followed.

Corda, Quorum, and Hyperledger Fabric implementations do not have wallets, and therefore 
wallets should not be a concern. However, you may have off-chain services that go to a crypto 
exchange as part of your enterprise application. If this is the case, then ensure that your user base 
has best practices implemented as well as being clearly defined for them. If your users are not 
trained and provided specific instructions, then the risk of security vulnerabilities could easily 
exist in your enterprise.

Blockchain Security Audits
Security audits need to be performed regularly, whether that’s every month or every quarter. It is 
not possible to audit every device on the network every time, so considering your blockchain 
audit schedule is really important.

From a blockchain perspective, security audits identify vulnerabilities and certify the func-
tional correctness of your blockchain code, smart contracts, and blockchain projects.

Hiring an experienced code auditor with blockchain expertise is critical for your success.
The common security code audit processes are as follows:

 ◆ Static code review, also known as source code analysis, is performed during a code review. 
This review is focused on finding vulnerabilities.

 ◆ Data flow analysis is used to collect runtime information about data in the software 
program while it is in a static state.

 ◆ Code analysis can be manual or automated. In manual reviews, also known as secure code 
reviews or dynamic reviews, code is reviewed line by line to look at every detail. Automated 
reviews perform more of a scan and generally do not test every link or function.

 ◆ Taint analysis is an audit method that checks variables that can be modified by the user 
input. Some languages have this feature built in.

 ◆ Test coverage analysis is a focused technique that determines which test cases are going to 
be covering the application code. This form of testing also determines how much code is 
exercised when running test cases.



328 | CHAPTER 11 Blockchain Security and threat landScape

 ◆ Expert code analysis is performed by a third-party software coding expert/auditor who 
reviews the code to determine whether there are concerns such as vulnerabilities or 
fraudulent transactions. The auditor may even reverse engineer the software program as 
part of the audit.

I will address most of these during the chapter in various levels of detail.

Blockchain Security Assumptions
When considering security in blockchains, you should expect the security of the cryptographic 
algorithms to be implemented appropriately. At least that is what is assumed in most blockchain 
implementations.

However, in the world of IT security, assumptions are not an option. We must identity, 
validate, test, and confirm again that our security functions are working as expected.

The first, most common assumption is at a basic level that we are trusting the inherently 
built-in security of a blockchain, such as digital signatures, affiliated hashing functions, or even 
membership controls.

The second assumption is that digital signatures should verify transactions and blocks. This 
would likely validate what is in most blockchains such as the integrity of the blockchain, for 
example. Other benefits such as nonrepudiation should be accomplished as well. Technically, we 
are assuming that it should be impossible to forge a digital signature—that is, for example, it 
would be mathematically impossible to take over a blockchain because of the amount of techni-
cal and financial investment required to reverse engineer the program.

A third assumption is that hash functions are used to chain blocks together in most of the 
enterprise blockchains as well as cryptocurrencies. Hash functions should be a one-way process and 
also have a state space significant enough to remove threats such as a brute-force guessing attack.

Of course, there could several other assumptions on blockchain deployments. For this chapter, 
I want to focus on the subject of addressing threats and maintaining security.

Blockchain Cryptography
Blockchain platforms rely on cryptography to perform mathematical functions that are part of 
cryptographic algorithms. The algorithms perform critical functions for the blockchain, as they 
provide for or at least enable security, privacy, and trust.

Several important forms of cryptography are commonly employed for blockchain security.

 ◆ Hashing functions are the most basic function where an input is expected to produce a 
specific output all the time. Nonces, which are random numbers, can also add comple-
mentary benefits to the hashing on blockchain to enhance security.

 ◆ Cryptography is the study and practice of securing private messages to ensure that only 
the intended parties or members on the blockchain can read them.

 ◆ Elliptic Curve Cryptography (ECC) is a form of public key encryption (PKE) that is used 
to generate a public and private key that will allow two participating parties to communi-
cate securely together.

Figure 11.2 shows the workflow of a typical cryptographic function. Plaintext is encrypted 
into cyphertext, which is then decrypted and converted back to plaintext so that the message 
can be read.



Blockchain Security BaSicS | 329

Encrypting and decrypting message contents use various methods and encryption keys in 
different blockchains. The use of encryption keys on a blockchain provides for what is called 
nonrepudiation. Nonrepudiation ensures that the creator/sender of the information cannot deny 
at a later stage their intentions in the creation or transmission of the information. Furthermore, 
blockchains provide immutability, wherein transactions to the blockchain will not be deleted 
or modified.

Hashing
Hash functions are mathematical functions that can take any input and produce an output of a 
fixed size. In cryptography, hash functions are typically used as a one-way function where it’s 
easy to go forward (input to output) but computationally infeasible to go backward (output 
to input).

To really understand what a hash is and how it works, check out the demo at https://
anders.com/blockchain/hash.html. Anders has put together a tool that allows you as a learner 
to interact with the demos.

Figure 11.3 shows data entered as “Hello readers.” The data in a hash will always return the 
same output. Remember, the same input equals the same output.

Figure 11.4 shows how a change to data will change the hash. Changing “readers” to “world” 
changes the output (hash).

Plaintext Encryption Ciphertext Decryption Plaintext
Figure 11.2 
cryptographic func-
tion workflow

Figure 11.3 
hash output

Figure 11.4 
hash output change 
after input change



330 | CHAPTER 11 Blockchain Security and threat landScape

In blockchains, a node arranges the entire ledger in the form of chronologically connected 
blocks. To ensure that the ledger remains tamper-proof, each block is actually dependent on the 
previous block. That’s where we get a chain of blocks, which we know as a blockchain.

Essentially, a new block will not be produced without having the hash of a previous block. In 
a permissionless blockchain, for example, the addition of a new block to the ledger has to be 
approved and verified by every node in the blockchain network.

Certificates
An X.509 certificate is a key certificate that is under the X.509 specification standard for public 
key infrastructure (PKI). X.509 is a standard framework that defines the format of PKI to specifi-
cally identify users and entities over the Internet. It helps to confirm that a connection is safe.

The X.509 provides standardized formats for the following:

 ◆ Attribute certificates

 ◆ Public key certificates

 ◆ Certificate revocation lists

 ◆ Certification validation algorithms

These X.509 certificates are used to validate identities in a blockchain as well as to transmit 
data. Only the owners of the certificates are actually able to read them. The certificates are tied to 
a public key value.

DNSChain (https://github.com/okTurtles/dnschain) provides a scalable and decentral-
ized replacement that does not depend on third parties—for example, on DNS services.

Certificate Standards and Management
X.509 certificates also act as secure identifiers and are commonly used as digital passports. 
Certificates commonly perform the same responsibilities between vendors, although versions can 
vary between vendors. The main differences in configuration and security adherence are the 
X.509 versions and the extensions used with that version.

Extensions reference the key identifiers. The value of extension fields is as follows:

 ◆ Subject key identifier—Holds the certificate’s owner identity.

 ◆ Blockchain name—Holds the name of the blockchain platform the certificate is used on.

 ◆ CA key identifier is what actually holds the smart contract address of the current 
certificate authority (CA). For non-CA certificates, this field would be empty.

 ◆ Issuer CA identifier—The issuer holds the address of the smart contract of the CA that 
issued this specific certificate. This is important since it enables the validator to find a 
parent CA smart contract in the blockchain network. Finding the parent means it could 
check whether the certificate with the corresponding hash was issued and was 
not revoked.

 ◆ Hashing algorithm—Identifies specific information regarding the hashing algorithm that 
is used in the calculation of the certificate’s hash.



Blockchain Security BaSicS | 331

Extensions can be a complex area to understand and generally an area for developers to 
master. Note that extensions can vary between certificate types as well. When reviewing your 
certificate management, it is important to understand the different key identifiers. It is possible to 
import the wrong certificates or at a minimum use a different identifier.

Certificate Authority
In Hyperledger, the CA issues a root certificate (rootCert) to each member (organization or 
individual) that is authorized to join the network.

The CA also issues an enrollment certificate (eCert) to each member component, server-side 
applications, and end users, as needed. Each enrolled user is granted an allocation of transaction 
certificates (tCerts). Each tCert authorizes one network transaction.

Table 11.1 summarizes the certificates.

Each type of certificate is specific to the use case. For example, just because a node (member) 
has an enrollment certificate (eCert) does not mean it can make transactions. The member must 
have another certificate, a tCert, to make a transaction. If the member needs to make 100 transac-
tions, then the member must have 100 tCerts.

Membership/Permissioning
It should be clear that an enterprise blockchain should be a membership/permissioning-based 
blockchain in most cases. This becomes true when security and privacy are at the forefront of the 
enterprise’s blockchain use case. Some enterprises may require an extension for off chains as 
well—for example, to access a stock ticker or a currency exchange.

In Hyperledger Fabric, permissioning is the concept of member enrollment certificates and 
transaction certificates for each member in blockchains. These two types of certificates enable an 
entity to be permissioned and identified while transactions are completed.

Permissioning and access management generally encompass what is known as identity and 
access management (IAM) for IT security personnel. Your enterprise needs to manage and monitor 
your blockchain services and the users, just like you are managing your email or 
Salesforce activity.

As part of most compliance requirements, you will need to validate user identities, ensure 
policies to process authorization, and address audit logs. Challenges can certainly abound with 

Table 11.1: certificate types

Certificate Use Case

root certificate (rootcert) one issued for the organization.

enrollment 
certificate (ecert)

one issued per member.

transaction 
certificate (tcert)

Many issued per enrollment certificate. one certificate is needed for every 
transaction.



332 | CHAPTER 11 Blockchain Security and threat landScape

compliance, so having a strong IAM/membership policy is critical. Identity management is a 
challenging area and can encompass areas such as the following:

 ◆ Know your customer (KYC)

 ◆ Anti-money laundering (AML)

 ◆ Compliance requirements

 ◆ Reporting and auditing

For example, in Hyperledger Fabric, the Fabric CA server as well as the client store their private 
keys in a PEM-encoded file. A PEM-encoded file is a Privacy Enhanced Mail Certificate file. This 
PEM file can also be configured to store private keys in a Hardware Security Module (HSM).

Two-Factor Authentication
Two-factor authentication (2FA) is an extra layer of security that’s used to ensure that only the 
legitimate owner can access their accounts. Using 2FA, the user will first enter a combination of a 
username and password and then be required to provide other information. This other piece of 
information should come in the form of one of the following approaches:

 ◆ Something that the user knows—This could be information such as a password, an 
answer to a secret question, or maybe a personal identification number.

 ◆ Something that the user has—This method includes the second level of authentication 
based on card details, through smartphones, other hardware, or a software token.

 ◆ Something that the user is—This is one the most effective ways to verify the user on the 
second step, and this is accomplished with biometric data, for example.

Blockchain Risks
As with other technologies, blockchains will encounter potential risks. Reviewing your enter-
prise risks and correlating those risks to your blockchain deployment are recommended. In 
reality, blockchains have no different risks from other technologies. If there is a risk, it’s how 
compliance is handled or a lack of training that could expose vulnerabilities.

Risk Assessment
Risk assessments are critical both before and after your blockchain implementation. Generally, IT 
risk assessments are the next step after performing a process called a business impact analysis 
(BIA). A BIA analyzes the enterprise’s critical business functions and identifies the impact of a 
potential loss of those functions. You can then begin your IT risk assessment.

One risk is around performance. Blockchain technology will not scale to a level such as a 
traditional database since transactions per second (TPS) results are vastly different. For example, 
Ethereum is running around an average 12 TPS and Visa is running over 1600 TPS, so perfor-
mance is not competitive and should not be expected. This performance risk could be eliminated 
with proper use case scoping.

Another concern is to ensure that enterprises specify the right solution for the right use case. 
Blockchain node distribution is a big concern around compliance and regulatory mandates. 



Blockchain riSkS | 333

Noncompliance could be costly to the enterprise. Comply with GDPR in the European Union or 
SOX in the United States, and then pay attention to what data center or cloud service you select. 
Understanding your compliance requirements will certainly help to reduce the risk of 
noncompliance.

A risk assessment should focus on the following areas:

 ◆ Assessing your risk assessment scope by determining the classes of risks to manage 
and identify.

 ◆ Identifying data privacy/permissions that will be adhered to for both the enterprise and 
the enterprise’s customers—for example, the right to be forgotten with GDPR.

 ◆ Determining the liability and legal prose requirements that should be formulated from the 
risk assessments.

 ◆ Meeting compliance requirements, such as reporting, auditing, and monitoring of the 
blockchain applications.

 ◆ Specifying data management and monitoring.

 ◆ Analyzing performance of the enterprise blockchain’s network statistics, which simply 
could be latency or transactions per second.

 ◆ Integrating enterprise applications to run on a blockchain network or extending an 
off-chain application to the blockchain network.

 ◆ Ensuring the recoverability (DR/BC) of your blockchain services if an outage or other 
concern occurs.

The risk assessment workflow comprises the following steps:

1. Perform a business impact analysis (BIA) to understand what could go wrong if a risk is 
not mitigated. A BIA should be sanctioned by the enterprise’s leadership and funded 
appropriately.

2. Perform an IT risk assessment to identify risks, vulnerabilities, and challenges identified 
in the BIA. Use appropriate tools and document accordingly to gain insight into the 
environment.

3. Classify the identified risks and vulnerabilities in the assessment that need to be 
addressed first or in the appropriate order. For example, a weighting approach is 
 commonly used to resolve these concerns in an ordered fashion.

4. Remediate the identified risks and vulnerabilities in the specified order.

Before trying to mitigate any vulnerabilities, it is important to understand what the actual 
risks are. Then you can assess the risk properly to perform appropriate risk mitigation 
techniques.

Risk Mitigation
Risk mitigation is defined as taking steps to reduce the adverse effects of a potential risk. There 
are four specific types of risk mitigation strategies that hold uniquely to business continuity and 
disaster recovery. These risk mitigation techniques can be applied successfully to blockchain:



334 | CHAPTER 11 Blockchain Security and threat landScape

 ◆ Risk avoidance is not entering into a situation where the risk is present.

 ◆ Risk reduction is where you’re performing responsibilities such as upgrading to the latest 
version of Hyperledger Fabric to avoid or reduce the likelihood of issues.

 ◆ Transfer of risk is relying on another organization to handle the concerns through typically 
insurance or a bond being purchased.

 ◆ Risk acceptance is where you are aware of the potential risks, impacts, and concerns and 
still proceed. An example would be running an operating system that cannot be upgraded 
or patched.

Company data should be considered an asset that is extremely valuable to the enterprise. As 
with any asset, it should be protected and insured and have a concise policy to restrict access. 
This could be an acceptable use policy (AUP), for example. The goal should be to protect the data 
whether it’s on a blockchain or not.

When you are considering blockchain data, you need to consider the following points to 
address the concerns around privacy and security:

 ◆ Blockchain management and traditional IT management have some similarities, such as 
meeting privacy requirements, but also some differences, such as lowering performance 
expectations (TPS) with blockchains. The need to meet any additional requirements, such 
as privacy or security, will have an effect on performance because of the overhead of 
protocols or procedures used.

 ◆ Blockchain and distributed ledgers are immutable—the ledger cannot be deleted, modi-
fied, or destroyed.

 ◆ Blockchain data may or may not be distributed. Blockchains may not even be replicated 
outside a data center. No DR or BC has been planned or funded.

 ◆ Blockchains that are permissioned will have restricted access, but that does not mean 
everyone that is permissioned should have access to the ledger. (Channels may solve the 
concern around privacy.)

Blockchains may also have additional risks as compared to a traditional database. Here are 
some examples:

 ◆ Blockchains may not meet compliance requirements, especially if there is no redundancy 
or availability with DR/BC plans implemented. This lack of redundancy is common in 
enterprise blockchains and could be a risk to the enterprise. Generally, in a traditional 
database architecture, redundancy is built in or specifically addressed by replication.

 ◆ Data confidentiality may be a concern that is not addressed appropriately. Data written 
to blockchain is “public” data, for example, on Ethereum. Note that “private” blockchains 
such as Hyperledger are centrally administered and are transparent to the consor-
tium members.

 ◆ Blockchains are combinations of newer technology (in reality, older technology melded 
together), so there could be a significant knowledge gap in numerous enterprises’ devel-
opment and production organizations.



Blockchain threat landScape | 335

Mitigating the identified risks to your company’s blockchain data requires the following:

 ◆ Protecting your enterprise data in an efficient manner (replication)

 ◆ Enforcing a data governance policy (security, user, or acceptable use policy)

 ◆ Validating data (before and after entry) to minimize data corruption and data flaws 
(mistakes)

 ◆ Restricting access to permissioned membership (ensuring only authorized users)

 ◆ Meeting compliance requirements identified by your counsel

 ◆ Following IT best practices such as the principle of least privilege, which limits the 
permissions to the exact scope needed

Risk mitigation is a complex area and one that the enterprises need to fund. It has been well 
documented that most of the enterprise-based security attacks have been a result of a lack of 
proper risk mitigation and management. Investment in this area is critical to your enterprises 
blockchain application success.

Blockchain Threat Landscape
Generally, in regard to blockchain there are some common vulnerabilities you would expect like 
network vulnerabilities but the other blockchain has some unique vulnerabilities where the 
“threat” could be a concern and must be addressed.

The following are the most common blockchain vulnerabilities that you will run into:

 ◆ Endpoint vulnerabilities

 ◆ Public and private key security

 ◆ Smart contract coding

 ◆ Lack of standards

 ◆ Mining issues (permissionless blockchains)

 ◆ 51 percent attack

 ◆ Phishing attacks

 ◆ Social media

Note that endpoints are generally focused on the blockchain network access points such as a 
gateway and its API.

51 Percent Attacks
This type of attack is almost always overhyped in the blockchain media and by security compa-
nies. It’s a threat but only in specific consensus methods. The reality is that if you’re an enter-
prise, you are likely not using proof-of-work (POW) consensus. This consensus is used in Bitcoin, 
Litecoin, and Ethereum.



336 | CHAPTER 11 Blockchain Security and threat landScape

A 51 percent attack is considered to be “selfish” mining, not rogue, in the sense that this attack 
happens when one single malicious miner controls more than 51 percent of the compute power 
on a blockchain network and can then inject false transactions into the system.

A 51 percent attack requires a miner to produce blocks in secret before posting them to the 
blockchain.

Finally, this attack type has been effectively rendered avoidable by a delay in transaction 
posting in the blockchain software.

Phishing Attacks
Phishing attacks happen because people do not pay close attention to detail. For example, with 
the Bitcoin wallet Electrum, there has been an ongoing hack against its user base because users 
may not realize they actually used a fake wallet. As a result of this phishing attack, a malicious 
party was able to steal almost 250 Bitcoin (BTC), which, at the time of the attack in 2018, 
was $880,000.

Subsequently confirmed by Electrum itself, the attack consisted of creating a fake version of the 
wallet that fools users into providing password information. For more on this attack, visit https://
www.coindesk.com/electrum-wallet-attack-may-have-stolen-as-much-as-245-bitcoin.

The lesson here is that you should pay careful attention to the domains you download your 
wallets or other blockchain software from. For example, if you are developing smart contracts on 
Ethereum and to utilize Metamask, then you need to go directly to Metamask.io. Do not go to 
another domain, software repository, or even Metamask.com or .net. These phishing attacks are 
generally preventable if the users pay attention to detail.

The following is the anatomy of a phishing attack:

1. The attacker registers a domain name similar to the genuine website.

2. The attacker then replicates the genuine site’s content and replaces the wallet address with 
a rogue address.

3. The attacker uses deceptive ads to promote the copycat site, which unwitting users click.

4. The attacker intercepts the communication and then reroutes all users of the authentic site 
to their own site.

For more info, visit https://resources.infosecinstitute.com/
blockchain-vulnerabilities-  imperfections-  of-  the-  perfect-  system/#gref.

DDOS Attacks
A distributed denial-of-service (DDOS) attack is an extremely common type of a network attack 
against a website, a network node, or even a membership service provider.

This DDOS attack is essentially initiated by many multiples (possibly thousands) of remote 
nodes, and then coordination is used to start their attacks. Essentially, a DDOS attack occurs 
when multiple systems flood a network resource with what are known as connection requests, 
messages, or other types of communication packets. The goal of this type of attack is to slow 
down or crash the system. The concentrated attack and subsequent shut down of the system 
results in a “denial of service” for legitimate users.

It’s true that blockchains are “distributed ledgers,” and thus being distributed can alleviate 
attacks. However, blockchain endpoints are certainly exposed to your corporate network and 



Blockchain threat landScape | 337

even the Internet. When connected to a network, a blockchain endpoint can be vulnerable and 
effectively block valid users.

NOTE a kaspersky survey found that 30 percent of businesses do not take any preventive measures 
because they believe they are unlikely targets of ddoS attacks.

To prevent DDOS attacks, you should ensure that your networking team has the resources in 
place to mitigate, manage, and monitor these concerns. Load balancing is commonly used to 
prevent significant loss of business as a result of these attacks.

DNS Hijacking Attacks
DNS is a domain name service that is critical to our network infrastructure. Without DNS we 
would not be able to access other nodes or sites. DNS hijacking is essentially a form of DDOS 
attack where your DNS is shut down, which can literally shut down your blockchain activity. If 
your members cannot access the membership service provider (MSP), for example, then your 
users and client applications won’t be able to validate against the MSP for their authorization 
and certificates.

To prevent DNS hijacking attacks, you should ensure that your networking team has the 
resources in place to mitigate, manage, and monitor these concerns, just like in a DDOS attack.

Implement best practices such as limiting the view of DNS/bind versions and disabling DNS 
zone recursions and even DNS zone transfers. Some best practices around DNS take little effort 
and cost nothing. Lastly, consider using a provider such as Cloudflare that can help prevent 
DDoS and DNS attacks.

Eclipse Attacks
Most permissionless blockchains use a peer-to-peer protocol (P2P) and are connected to each 
other with no centralization. However, because the blockchain network is deliberately not fully 
connected, this could introduce the eclipse attack.

In an eclipse attack, an attacker gains control of all of a node’s connections to the network. By 
gaining control of the node’s connections, it allows the attacker to completely control the node’s 
view of the distributed ledger and network operations. A successful eclipse attack allows the 
attacker to perform a double-spending attack against the isolated node, helps the attacker perform 
a DoS attack, or lets the attacker use the node’s computational resources for the attacker’s  
benefit in the blockchain consensus algorithm.

These types of attacks are only successful on a permissionless chain such as Bitcoin or 
Ethereum. The amount of resources that are required would be substantial as well.

The ease with which an eclipse attack can occur depends on a number of factors.

 ◆ A network’s data structure (P2P ledger versus a centralized ledger)

 ◆ Connection requests from client applications or other nodes

 ◆ Host (node) management and its IP addressing schema

To mitigate these security concerns, enterprises should be on an enterprise permissioned 
blockchain. If your company is using Ethereum, you may need to consider using whitelists or 
adjusting your connections through a concentrator such as a bastion host.



338 | CHAPTER 11 Blockchain Security and threat landScape

Insider Attacks
Permissioned blockchains, even though not generally subjected to permissionless blockchain 
attacks, such as a replay attack or a 51 percent attack, are, by their nature, generally perceived as 
being more secure than permissionless blockchains such as Ethereum.

Permissioning certainly mitigates who can access your blockchain services and also helps you 
identify who is doing what. However, when you allow centralization of resources, history has 
proven that the people who believe they are not being watched or questioned will do stu-
pid things.

An insider attack is exactly what it sounds like: an insider working in the organization has 
been permissioned to access your blockchain network resources and is executing an attack from 
the inside. That is, the attack is coming from the corporate blockchain network, not from outside 
the company. The inside attacker could exhibit malicious behavior by gaining control of the 
administrator certificate. As an administrator or admin certificate holder, the insider will have 
full control over the blockchain services and therefore could cause disruption, such as blocking 
valid transactions.

With administrative control, the attacker can add or revoke access, blacklist specific identities, 
and also manipulate the access a given identity has to the blockchain.

Insider attacks come in the form of the following:

 ◆ Account-related issues such as hidden accounts or over-privileged accounts.

 ◆ MSP or certificate authority hijacking where the certificate control is abused.

 ◆ Data manipulation of transaction logs or compliance logs occurs as a result of permission-
ing or exposed vulnerabilities.

To mitigate these types of issues, it is important that your enterprise considers IT security best 
practices such as role-based security or minimum permissions. Audits must be accomplished and 
routine audit log monitoring should be maintained and monitored by an IT security 
group member.

The one benefit of a permissioned blockchain is that your enterprises can control as much or 
as little as possible when it comes to permissioning, auditing, and configuration. It is recom-
mended to be as aggressive as possible in protecting your enterprise data without interfering 
with your blockchain users and applications to the point where they can’t work.

Replay Attacks
A replay attack is usually a scheme that is utilized during a fork of a blockchain. For example, an 
attacker might copy an existing transaction and then attempt to resubmit it to the blockchain as if 
it were a new transaction.

A hacker may also attempt to resubmit the transaction if a hacker has your digital signature 
and because your original transaction was valid. If the attacker succeeds in resubmitting this 
rogue transaction, they would receive the wallet transactions twice.

You can easily prevent replay attacks by removing any intermingling of blockchains. For 
example, some blockchains such as Bitcoin Cash (BCH) have replay attack protection. This 
protection is accomplished by adding a special mark on the validity check that identified the 
transaction was for the BCH ledger and not the previous ledger from Bitcoin.

From a user perspective, to help prevent even risking this issue, you can separate your 
accounts by not mixing coins in the same wallets.



SMart contract Security | 339

Routing Attacks
A routing attack is essentially what it sounds like: traffic is hijacked and then routed somewhere 
it should not be routed. Basically, a routing attack relies on intercepting messages propagating 
through the network. While these messages are propagating through the network, the messages 
could be captured and tampered with.

This type of attack is generally part of a man-in-the-middle attack. This type of attack would 
not be successful if the hacker does not obtain full control over the blockchain network resources. 
The only way for the network nodes to detect tampering is when they receive a different copy of 
data from another node. Comparing the messages sent and received between nodes is an 
effective way to mitigate this vulnerability.

Perhaps the most proactive way to prevent these types of attacks requires significant monitor-
ing of your network services and messaging traffic. Metrics should include packet round-trip 
times (RTT), anomaly monitoring, and even pattern matching.

Sybil Attacks
A sybil attack is when an attacker creates multiple accounts on a blockchain in order to deceive 
the other blockchain participants. This behavior is similar to folks who troll on social media by 
creating multiple accounts to accomplish their silly behavior. A sybil attack could be quite similar 
to a phishing attack where an imposter pretends to be someone such as your boss asking you for 
your network password.

Preventing sybil attacks is considered straightforward in the sense that you need to pay 
attention to who your wallet funds are being sent to. These types of attacks should not be an 
issue on a permissioned blockchain since the members are clearly identified and wallets are not 
normally used.

Smart Contract Security
In Ethereum blockchains, all modifications to a smart contract’s data must be performed by its 
blockchain code. This means that a user cannot edit the contract directly or even delete the 
contract. To modify a contract’s data, a blockchain user must send the request to its code, which 
is at a lower level. This request process kickoff will determine whether to fulfill and how to fulfill 
those smart contract modification requests.

For comparison purposes to Linux, we can think of a smart contract as an application that is 
installed on top of an operating system. We can also compare a blockchain smart contract to how 
a traditional database handles database modification. A traditional database uses “enforced 
stored procedures,” or “predefined rules.” In a blockchain, we append to the next block on the 
blockchain when a transaction is processed, as opposed to enforcing entries on a procedural 
basis. Security is built into the blockchain code and the smart contract platform. The enforcement 
of smart contracts varies widely between platforms from a technical approach.

Smart Contract Legal Prose
Legal prose is effectively a direct method of attaching a document to a smart contract. This is 
done to address what the contract code may not address, such as handling disputes to help 
manage or mitigate issues when the contract code is not enough.



340 | CHAPTER 11 Blockchain Security and threat landScape

Corda supports legal prose, as mentioned earlier in the book. In Corda, addressing this as a 
contract class would be annotated with the @LegalProseReference annotation.

The @LegalProseReference annotation associates the smart contract with an attached docu-
ment that will detail the contract’s constraints imposed by the legal prose terms. Note that it is 
not required to attach legal prose to a Corda contract when developing one.

The main difference in Corda and other blockchains is focused on how a smart contract in 
Corda would attach legal prose in the smart contracts. From a privacy and compliance perspec-
tive as well as a financial perspective, the legal prose schema is quite important as well for cost 
savings. This is accomplished by Corda smart contracts linking the business logic and the 
business data to an associated legal prose structure.

When it comes to Hyperledger, Ethereum, and Quorum, there are no documented features for 
addressing legal prose at the time of writing.

However, if legal prose were a priority, a developer could certainly address this in a rudimen-
tary fashion with attachments or by providing for additional steps in the smart contracts. This 
would enable better smart contract enforcement but won’t likely address legal issues in 
most cases.

Your enterprise should follow up with corporate counsel to determine whether these contracts 
and their document attachments are legally enforceable or even valid in the jurisdic-
tions required.

Smart Contract Vulnerabilities
Smart contracts are essentially nothing more than logic written in computer code. The computer 
code is developed in specific languages, such as JavaScript, Golang, and C++, and should be 
vetted via software development best practices before deploying.

The software development best practices could be anything from clean code, vulnerability 
assessments, DevOps, and agile processes, or whatever your organization deems acceptable.

Smart contracts may introduce new vulnerability points in an enterprise permissioned 
blockchain such as Hyperledger or Corda. Most enterprise blockchains rely on asynchronous 
Byzantine fault tolerance replication protocols to establish consensus and then effectively 
provide their low-level trust assumptions to the smart contract applications.

The inability for smart contracts to execute on all nodes within a permissioned blockchain is a 
serious concern. When you consider smart contracts that do not execute properly and you have 
100 nodes performing the same processes that result in blockchain failure, this could be consid-
ered a denial of service on the blockchain network.

Risks that are common around smart contracts will arise around programming oversights 
such as access control, return values, overflows, timestamps, and numerous other “dirty 
code” issues.

Chapter 10 covers smart contract coding issues in more detail.

Blockchain-Specific Features
This section reviews the most common blockchain-specific features for Ethereum, Hyperledger, 
Quorum, and Corda. Each blockchain has some unique security-related functions, features, and 
utilities. The features discussed in this chapter are solely based on the time of the writing, so I 
mainly discuss features that are past the “alpha” phase of development. A slew of additional 
features are in incubation but won’t be covered.



Blockchain-Specific featureS | 341

Ethereum
Ethereum was the first smart contract platform that was designed to allow developers to access a 
Turing-complete platform on the blockchain and develop applications as smart contracts.

Because this was a first of a kind platform that was meant to be permissionless (open to the 
public), developers had a lack of security features to work with. Security from an enterprise 
development perspective in Ethereum was more of an optional feature that would be considered 
later in the lifecycle. The lack of security-related features was due to the use case that the 
Ethereum application presented to the world at the time it was deployed.

If security is truly important, then an enterprise should not deploy an application that 
requires privacy, security, or enterprise features on Etheruem. There are options to deploy 
Enterprise Etheruem, but I do not feel that Ethereum, even Enterprise Ethereum, is meant for 
enterprises that are concerned about security features.

Whether you deploy your own private Ethereum network or use the public network (mainnet), 
when assessing your security risks, you need to consider that Ethereum has four main components.

 ◆ Ethereum nodes, which are distributed worldwide and may expose corporate information

 ◆ Ethereum virtual machines, which have a copy of the ledger state, which is distributed to 
every Ethereum node

 ◆ Smart contracts, which are immutable and therefore once deployed are on the block-
chain forever

 ◆ Dapps, which are decentralized applications and for which expecting consistent perfor-
mance is not reasonable

The main security concern with Ethereum is really focused on the nodes that are deployed. A 
node is a device, program, or virtual machine that communicates with the Ethereum network. 
When an Ethereum node is deployed, that node could have numerous vulnerabilities, such as 
user authentication issues or lack of patching, or more common than not, the node is multitask-
ing. That is, the node is not dedicated to running the blockchain node but is also used for other 
tasks, such as developing, running batch jobs, or even multimedia. Securing your Ethereum 
nodes is paramount for the network.

Ethereum Testnets and Mainnet Security Testing
Mainnet is the real data on the blockchain, including account balances and transactions, which 
are public. It is important to note that anyone can create a node and begin verifying transactions. 
Ether on mainnet has a market value and can be exchanged for other cryptocurrency or fiat 
currencies. Because Ether has value, we must secure our wallets and ensure we don’t 
lose our keys.

Security testing can be done in Ethereum on any testing network. The mainnet is for produc-
tion, so it’s highly unadvisable to attach unsecure nodes to the mainnet for obvious reasons.

There are three main types of extended Ethereum networks that could be used for secu-
rity testing.

 ◆ Public test networks— Developers use public test networks to perform tests on their 
Ethereum applications before final deployment to the main network. Ether is used for 
testing purposes only and actually has no value from a trading purpose. Test networks 
include Ropsten, Kovan, and Rinkeby.



342 | CHAPTER 11 Blockchain Security and threat landScape

 ◆ Enterprise/private networks—Private Ethereum networks allow parties to share data 
without making it publicly accessible. A private blockchain is a good choice for sharing 
sensitive data and scaling to handle higher read/write throughput. Quorum, for example, 
is a hybrid of Ethereum and a private network.

 ◆ Local test networks—Local test networks are deployed on your corporate infrastructure 
for your testing. Local testing can certainly provide benefits around privacy and mitigat-
ing performance issues.

The main lesson here is to identify what test network is appropriate for your situation. 
Perform the tests and then deploy to the mainnet only after testing is complete and the identified 
risks are removed.

Ethereum Development
From a security perspective of blockchain development, it is important to understand that there 
are myriad Ethereum toolsets, utilities, IDEs, and other solutions. Each of these could pose a 
security vulnerability to your development group but also your enterprise depending on how 
things are rolled out, managed, and monitored.

When designing or architecting your blockchain, there are some key areas around security to 
focus on, listed here:

 ◆ Private or public dapps that are deployed on the blockchain nodes should be processed 
through a proper software development framework, such as a properly implemented 
DevOps foundation, or at a minimum a proper change control system. Using pipelines is a 
best practice in the software world, so it is natural to want to extend this blockchain 
development to a DevOps environment.

 ◆ Application platform interfaces (APIs) need to be updated, validated, or deprecated based 
on your requirements and should be clearly documented and even maintained through an 
API management platform that maintains version controls.

 ◆ Smart contracts need to be developed, tested, audited, and secured before  
being deployed.

 ◆ Validate that the user interface to the blockchain application is secure by testing. For 
example, removing unneeded hot keys or function keys is a good start. However, UX 
testing is not all visual; the code should be inspected and tested for exploits. If cryptocur-
rency wallets are involved, then we must realize that integration needs to be considered as 
part of the user application to address wallet-specific vulnerabilities such as crypto jacking.

Each of these could certainly pose a challenge to how to mitigate potential issues such as 
vulnerabilities. The best place to start to remove these challenges is in the architecting phase 
where security concerns are identified and mitigated before the development process.

Ethereum Security Enhancements
Ethereum has a limited level of integrated support for meeting enterprise privacy or security 
requirements. A good amount of the reasoning is that it is a permissionless blockchain with 
limited control over its user base. Its main security feature is the use of public keys for identity 
management, which give users a level of pseudo-anonymity.



Blockchain-Specific featureS | 343

Security features in Ethereum can and should be implemented appropriately in Ethereum as 
smart contracts or dapps.

Future development in Ethereum is planned to include support for the mathematical opera-
tions used in zero-knowledge proofs like zkSNARKS.

Organizations wanting to use Ethereum but with advanced security and privacy controls 
should consider looking at Quorum. Quorum is an actual fork of Ethereum and has wide 
support from the financial sector to deploy a private Etheruem network.

Hyperledger Fabric
Hyperledger Fabric is a smart contract platform originally built by IBM. The Hyperledger Fabric 
platform is currently maintained by the Linux Foundation and is considered open source. 
Hyperledger Fabric was specifically designed to be an enterprise blockchain that does have some 
unique features around security, privacy, and other enterprise-focused requirements.

The main security feature to review is that Fabric is designed with the concept of channels. 
Channels are similar in some respects to tunnels in the IP networking world, which are a 
point-to-point network connection.

In Hyperledger Fabric, a channel is a completely distinct blockchain network with its own 
distributed ledger. This channel is visible only to members of the channel and provides an 
additional layer of privacy. This specific architecture allows multiple blockchain networks to run 
on the same network of nodes and provides for enhanced privacy as well as another layer 
of security.

As with any blockchain, vulnerabilities can exist in the blockchain smart contracts. 
Hyperledger Fabric refers to smart contracts as chaincode.

Hyperledger Fabric chaincode can be programmed in either Node.js or Go and will run in 
secure Docker containers. These chaincode programs are run by an external application interact-
ing with the distributed ledger.

Hyperledger takes a slightly different approach to transaction validation and execution than 
smart contract platforms like Ethereum. Hyperledger Fabric follows an execute, order, validate 
control flow. It is possible in Hyperledger Fabric to have a transaction committed with a flawed 
smart contract due to this execution process occurring before the validation.

The best way to mitigate security vulnerabilities and ensure transactions are not committed 
fraudulently is to perform audits on your chaincode.

Hyperledger Chaincode Scanner
There is a unique tool that is available for chaincode scanning called Chaincode Scanner by 
Chainsecurity. Chaincode Scanner is a static analyzer for Hyperledger Fabric–based smart 
contracts. It works by accepting chaincode written in Go as an input and then checks it against 
the input for nine specific vulnerability patterns.

Using the Chaincode Scanner will be a simple exercise for developers. The developer first 
uploads code to the public repository (GitHub) and then adds its path into the input field on the 
Chaincode Scanner website.

Developers should be proficient in performing tasks such as pathing and adapting Go 
packages with a go get command to use this solution. The results will be displayed as a table 
with detailed code review notes.

Figure 11.5 shows a snapshot of the Chaincode Scanner tool. Simply enter the URL of your 
application to start a scan.



344 | CHAPTER 11 Blockchain Security and threat landScape

For more information on Chainsecurity’s tools, visit https://chaincode.chainsecurity.
com/. Chapter 10 discusses chaincode in more detail.

Hyperledger Fabric Security Enhancements
Hyperledger has a few features designed to improve its security for business use cases.

 ◆ Contains a pluggable identity management option that supports traditional IAM schemes 
such as LDAP/AD commonly used in most enterprise environments.

 ◆ Provides channels that are logically distinct and separate virtualized blockchains. Nodes 
can belong to multiple channels as designated by the admins.

 ◆ Allows for privacy through the exchange of data via the blockchains gossip protocol, 
which differs from Ethereum, for which data only goes to nodes with a need- to- 
know basis.

R3 Corda Blockchain
Corda is an open source blockchain that was designed for the enterprise, including financial 
enterprises. Corda has some unique features and capacity around blockchain security and 
privacy. Note that Corda was developed with the Java environment as the virtual machine, 
which provides for rapid adoption by businesses.

Corda Notary Security
A notary is a trusted party that guarantees that a particular state is consumed only once. In 
Corda, a notary is perhaps the most important node to maintain and secure. You should consider 
a notary more of a custodian or intermediary that acts almost like a traffic officer directing traffic 
(states). In Corda, each state has a specific notary, which must sign any transaction in which that 
state is consumed. Once a notary has done this, it must not sign another transaction for the same 
state. Notaries are the network’s guardians of transaction uniqueness, and we cannot risk having 
a notary compromised.

The concept of a notary differs from most other blockchains in the sense that conventional 
blockchains solve this challenge by allowing every node to see every transaction, which in turn 
would make conflicts easy to identify and ideally reject.

Figure 11.5 
chaincode Scanner



Blockchain-Specific featureS | 345

There is no centralized authority in a Corda network, which differs from Hyperledger. The 
notary has no authority really and maintains a list of account items that have been spent. The 
notary is about preventing double spending—no more and no less. This is where a vulnerability 
could be injected into a Corda network, so we must maintain and audit our notaries.

From a security standpoint, as well as my own point of view, the fact that anyone can stand 
up and run a notary in a Corda network is perplexing. Basically, it’s up to the parties transacting 
to decide who they want to act as the notary, so it’s possible a rogue notary from an insider could 
steal information, or worse.

In a nutshell, Corda nodes see only some of a network’s transactions, which means better 
privacy than conventional blockchains. However, the risk of a rogue notary could be introduced, 
and we must identify and mitigate these issues.

Corda Smart Contracts
Contract execution and validation are performed on the Corda JVM, which is partially determin-
istic. Deterministic means the same code will produce the same output with no changes in end 
results. Developers can certainly make changes to ensure the JVM is fully deterministic.

The smart contract execution and validation are processed on the Corda Java virtual machine 
(JVM), which is locked down and quite secure. The JVM acts as a sandbox. However, the JVM is 
running Java, which is inherently unsecure, so you need to review Java-related vulnerabilities. 
These Java-based vulnerabilities could become evidently true if you are on a consortium-based 
blockchain with nodes that are not controlled centrally or in a secure network such as a DMZ. A 
DMZ is a secure partition of a corporate network and is commonplace in IT networking. If your 
virtual machines are in Apache MyFaces Core 2.0 with specified versions, Java can provide 
remote attackers the ability to read arbitrary files on your JVM.

Corda Security Enhancements
Corda’s security is based primarily on its solid need-to-know philosophy and its unique 
approach to network of notaries. Since users can only see and interact with transactions in which 
they have a stake, the potential impact of a data leakage is reduced.

Corda also uses a point-to-point TLS-encrypted protocol. This differs from peer-to-peer 
broadcasts such as other blockchains.

X.509 certificates are also used in the blockchain network, and flexibility is available in this 
area. Security in Corda is heavily dependent on what are known as notaries, which can be 
considered custodians of the network. Assets and transactions in Corda can be held hostage if the 
assigned notary refuses to transfer or sign them. A malicious notary can allow what is considered 
a double-spend attack, which would ensure proper accounting of the blockchain is not 
achievable.

Implementing a Corda blockchain, notary trust, and security is a paramount task for the 
consortium members to ensure that the blockchain is secured. Corda does a good job of disclos-
ing vulnerabilities and best practices on its website. For a concise document that describes secure 
coding, visit https://docs.corda.net/secure-coding-guidelines.html.

Quorum
Quorum is designed to be permissioned, meaning that networks using Quorum won’t be open to 
the Ethereum network as they are in most cases with Ethereum.



346 | CHAPTER 11 Blockchain Security and threat landScape

Quorum is deployed as a private permissioned blockchain (private implementation of the 
Ethereum protocol) that operates with extremely different expectations of trust between 
approved nodes than other permissionless blockchains. For some reason, there was some 
confusion originally on Quorum being deployed on the Etheruem public network, and this is not 
true. Quorum blockchain was designed for financial institutions that require a high-performing 
private and secure transaction platform within a permissioned group of participants that need 
guaranteed privacy.

Quorum directly addresses specific challenges to blockchain technology adoption within the 
financial industry and beyond. Most of these challenges are focused on privacy and security for 
financial sectors. Financial institutions are well versed in working with other institutions in a 
consortium manner. One example was the SWIFT network where financial transfers and related 
financial information were both shared but also were guaranteed levels of privacy as required 
between parties in the SWIFT consortium.

Quorum provides some substantial benefits around consensus and its security-related 
enhancements.

Quorum Consensus
Quorum’s consensus protocol, called QuorumChain, is initiated within the genesis block of the 
blockchain. QuorumChain is a relatively straightforward, simple majority voting consensus 
protocol. A certain set of nodes is relegated with voting rights, and it’s possible to confer voting 
rights to others.

In Quorum a smart contract is used within the genesis block to specifically assign voting 
rights and also to track the status of all voting nodes within the network as it updates. This is 
actually somewhat different from other blockchains and one area where Quorum differs signifi-
cantly from Ethereum.

Voting is triggered by the smart contract that pings the voting nodes. This ping is actually 
requesting these nodes to commit to a transaction as the correct block at a specific height in the 
blockchain chain. A possible vulnerability that could occur is if a mutation happens in a private 
transaction in Quorum. This vulnerability could easily be identified during a proper code review 
in most cases.

Quorum Security and Privacy Enhancements
Quorum manages its secure message transfers through a system called Constellation. 
Constellation is a general-purpose mechanism that is not necessarily blockchain-specific. Think 
of Constellation as a message service and encryption manager all in one. It serves a similar 
purpose as Zookeeper and Kafka in Hyperledger Fabric. The one area that might catch develop-
ers is that Constellation is written in Haskell—not your everyday programming language. I will 
cover Constellation from a developer perspective in Chapter 10.

Quorum offers the following security enhancements over Ethereum:

 ◆ Quorum supports the implementation of both private transactions and private contracts 
through public/private state separation.

 ◆ Quorum utilizes the newer Constellation peer-to-peer encrypted message exchange for 
directed transfer of private data to network participants, which is fully integrated.



SuMMary | 347

 ◆ Alternative consensus mechanisms are supported with a permissioned network with 
varied security features that could be enabled by your development teams.

 ◆ Developers with Ethereum experience will be able to develop with no real ramp-up time 
and with little effort to implement security features.

Summary
This chapter covered various aspects around blockchain security that were mainly focused on 
best practices such as security audits and security scanning. Blockchain uses forms of cryptogra-
phy to provide a secure transaction process. Many forms of vulnerabilities that blockchains can 
be exposed to such as an insider attack or a routing attack need to be addressed. Performing and 
acting on a proper risk assessment would certainly reduce or eliminate vulnerabilities. Ethereum, 
Hyperledger, Corda, and Quorum all offer unique security and privacy features and capacity 
that should be considered in your blockchain design and deployments.



Chapter 12

This chapter covers the growing demand that has been documented by the increased use cases 
around blockchain technologies and the consistent documented hiring around blockchain 
expertise. We’ll look at how blockchain got its start and where we are now in the technology 
investment phase.

Whether you are working for an IT vendor, integrator, or VAR, you likely have been hearing 
quite a bit about blockchains. Blockchains have the potential to significantly change your 
business as a company, especially around trust. As a sales organization or services organization, 
enabling your enterprise sales teams in blockchain technology would be a great step toward 
establishing a blockchain practice.

The goal of this chapter is to give you a factually-based approach on why blockchain demand 
is growing and how to justify your own enablement of blockchain-focused services.

Finally, we also cover the most common certification and training opportunities to help grow 
your business, knowledge base, and enablement toward blockchain.

Technology Investments
From an enterprise standpoint, we are past the initial investment and early adopter phases of the 
blockchain technology cycle. We are now entering the growth phase of the blockchain cycle. 
Several consulting firms have identified similar patterns as well and even have detailed reports.

Both Accenture and Deloitte are examples of companies of significant industry prominence 
that have done a concise job of portraying blockchain as a growth area. Their blockchain-focused 
websites include numerous forms of collateral, such as reports, use cases, and white papers, that 
bring blockchain to light as a growth opportunity.

Technology investments are critical to blockchain just as in other sectors of the IT marketplace. 
However, these investments generally do not happen overnight. As a previous employee of 
several startups and a private company going public, I can attest that these phases in the 
technology investment cycle can take years.

Figure 12.1 shows the four phases common in the technology investment and adoption cycle. 
Investments in a technology are critical. This is where uses cases are proposed, and assessments, 
surveys, and preliminary investments are made. The early adopter phase is when a large 
investment bank or angel fund normally invests due to the clear benefits shown in the earlier 
investment phase. The growth phase is a result of investments, acceptance, and value being 
provided. Also, the growth phase is when an IPO may occur, bringing in additional investments. 
Maturity occurs when the technology reaches what is considered mainstream due to clear 
industry disruption.

Blockchain Marketplace Outlook

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



350 | CHAPTER 12 Blockchain Marketplace outlook

NOTE the future of blockchain is looking bright. Both the demand for technical skills and the in-
creasing number of potential use cases provide for a significantly positive outlook for blockchain use 
cases, implementations, and expertise.

Investments in Blockchain
The amount of investment in blockchain technology by organizations of all sizes cannot be 
ignored. We are talking tens of millions of dollars in different startups annually. In addition, 
more than 90 percent of the major financial institutions have made investments in blockchain 
technology.

The organizations that invest in blockchain technology generally fall into one of three types.

 ◆ Financial institutions

 ◆ Technology companies

 ◆ Venture-capital funds

These types of organizations would not be pouring money into the technology unless they 
expected a profit. Big money tends to follow success but also creates its own form of success.

The venture-capital firms investing in blockchain are among the “who’s who” of investment 
firms. It’s hard to believe that all these companies would be investing in a technology that’s not 
providing a return to them at some point. The following article is worth a read: 
https://101blockchains.com/top-blockchain-investors/.

My take is that we are witnessing another dot-come type of event in the sense of rapid 
investment and adoption. The question is, who will be the winners and who will be the losers? 
Right now, opportunities abound, so it’s up to you to get in and take advantage.

Blockchain Market Patents
One of the areas that I have never seen well documented was how patents can correlate to 
demand. The number of patents as well as the speed of how these patents are being applied for is 
mind-blowing. For example, in less than a few years, Bank of America (BofA) has more than 50 
blockchain patents, including in the following areas:

 ◆ Cryptocurrency exchange system

 ◆ Wire transfers using cryptocurrency

 ◆ ATM as a service

 ◆ Blockchain-based cash handling

This begs the question: why do banks show so much interest in blockchain? The answer is the 
potential financial engineering opportunities that may abound with blockchain technology.

I found this patent news quite interesting since it is well documented how blockchain can be 
used to remove staff as well as infrastructure, considering blockchain is not just about making 
things easier or about the immutability of data.

Investments Early Adopters Growth Maturity 
Figure 12.1 
technology invest-
ment phases



technology investMents | 351

Blockchain is essentially another form of “financial engineering,” albeit a form that is techni-
cally driven and more challenging than cloud computing or off-shoring. Imagine that you’re a 
bank with thousands of highly paid bankers, lawyers, investment analysts, and numerous other 
roles. What would you do if you saw an avenue to remove a significant target of highly paid 
“overhead”?

Your competitors are doing this same thing, so you essentially have to consider this as well. I 
have been in discussions with both insurance and financial organizations about blockchain as a 
cost-cutting measure. Trust me, they are working on that outcome and looking at potentially 
hundreds of millions in savings for the larger banks. Blockchain is another enabler for cost 
reductions—something a presales-focused engineer must be cognizant of.

The patents that are being applied for are indicators of potential cost efficiencies. The patent 
applicants and patent holders range in both size and the types of industries they serve.

NOTE according to Bofa, which commissioned a paper, called “Bitcoin: a first assessment,” compiled 
by its strategy team, Bitcoin has the possibility of becoming a major means of payment.

Banks are not the only types of companies flocking to blockchain patents. A significant 
number of other verticals—including retail, social media, technology, insurance, and transporta-
tion companies—have been procuring patents at a rapid pace. Examples include the following:

 ◆ Walmart

 ◆ IBM

 ◆ Facebook

 ◆ JPMorgan

 ◆ Ford Motor Company

 ◆ Toyota

 ◆ Amazon

 ◆ Alibaba

Amazon, for example, has two unique patents.

 ◆ The Signature Delegation patent, which at the time of writing is in application status, uses 
signatures to protect the integrity of digital signatures and encrypted communications. At 
first glance, this patent does not appear to have a direct application for cost efficiencies; 
however, when a company such as Amazon delivers more than 600 million packages per 
year, the potential reduction in loss, chargebacks, etc. could be significant.

 ◆ “Generation of Merkle Trees as a Proof of Work” (patent number US 10,291,408 B2) 
suggests Amazon is in the process of creating its own cryptocurrency. Amazon would be 
just as substantial as Facebook Libra (at least in the United States). Merkle trees histori-
cally are associated with a proof-of-work (PoW) consensus, and the only obvious use case 
would be to create a cryptocurrency. However, there are no statements or comments at the 
time of writing.

In my opinion, there is a clear and present danger in the sense that these large multinational 
organizations are trying to control the blockchain market. It’s not just Amazon, IBM, or Walmart; 



352 | CHAPTER 12 Blockchain Marketplace outlook

smaller cryptocurrency-focused and enterprise-focused blockchain companies are on the 
offensive, buying any blockchain-related patents. These patent acquisitions could also be 
counterproductive for the industry as a whole in some respects. For example, startups may not 
be able to compete on the same level and therefore, not enter the market as expected. This could 
limit innovation and even cost efficiencies.

To learn more, you can go to the US Patent and Trademark Office, at http://appft.uspto 
.gov/netahtml/PTO/index.html, and search the database for applications or patents.

Blockchain Market Growth
The blockchain market is clearly growing—and is expected to continue to grow by just about 
every research firm that reports on blockchain markets. The main challenge is to decipher the 
market research and determine which industries would likely be the main benefactors.

An interesting report referenced in PR Newswire states the following:

“The global blockchain market size is expected to grow from USD 1.2 billion in 2018 to USD 23.3 
billion by 2023, at a Compound Annual Growth Rate (CAGR) of 80.2%.”

To read the full article, visit:
https://www.prnewswire.com/news-   releases/the-   global-   blockchain-   market-    

size-   is-   expected-   to-   grow-   from-   usd-   1-   2-   billion-   in-   2018-   to-   usd-   23-   3-   billion- 
   by-   2023-   -   at-   a-   compound-   annual-   growth-   rate-   cagr-   of-   80-   2-   300762798.html

When you compare the percentages against other technologies, it’s clear that the disruption 
these blockchain technologies could make may be substantial.

Complementary and Adverse Blockchain Acceptance Drivers
The main drivers that could complement the increasing acceptance of blockchain technologies 
include the following:

 ◆ Increased cost efficiency in financial, compliance, and logistics

 ◆ Transparency requirements especially in logistical supply chains that are consumer based

 ◆ Increased adoption of digital certificates for enterprises

 ◆ Acceptance of security tokens in the financial industries

 ◆ Increased capacity of blockchains mainly around transactions per second (TPS) that are 
more competitive with traditional applications

The main drivers that could adversely affect the blockchain market growth are commonly 
cited among researchers, analysts, and even vendors are as follows:

 ◆ Regulatory and compliance concerns

 ◆ Integration of enterprise ecosystems

 ◆ Technical expertise (developers, architects)

 ◆ Lack of proven implementations of blockchain technology

 ◆ Application performance requirements not being met by blockchain technologies such as 
transactions per second (TPS)



technology investMents | 353

There are, of course, likely other valid explanations why blockchain technology is not yet 
being fully adopted. For the purposes of this book, I will not cover every aspect and even 
industry segment challenge. Blockchain acceptance is going to be driven by clearly defined 
verticals and industries.

The main benefactors of blockchain acceptance are industries that depend on intermediaries, 
financial institutions, logistics, and supply chains and compliance-dependent industries.

Blockchain acceptance and real-world implementations will likely grow in the double digits 
year over year. However, it is widely accepted that specific industries such as logistics and the 
financial sectors will lead the way in year-over-year growth. We know the investments are being 
made, and we are now transitioning into the mainstream phase of the technology lifecycle.

Blockchain Expertise Demand
Demand in blockchain expertise is clearly being seen. At the time of writing, LinkedIn had more 
than 16,000 roles with “blockchain” in the job title or description just in the United States.

This is quite interesting since it would appear most employers are not looking for a full-time 
blockchain engineer, developer, or architect. Instead, these prospective employers are clearly 
showing in their job descriptions and requirements that blockchain-related knowledge is at least 
nice to have.

Here is a brief review of the LinkedIn demand at the time of writing:

 ◆ Blockchain architects are routinely in demand. Having experience in a presales capacity 
and postsales capacity is usually part of the required skillsets.

 ◆ Developers with skills in numerous languages are in demand. Programming languages 
that are generally in demand for blockchain developers include Java, JavaScript, Go, 
Simplicity, Solidity, C++, and Python.

 ◆ Developers should have experience in DevOps, full stack, frontend, and even backend 
development.

When it comes to roles, a blockchain developer is the most widely required role listed for 
blockchain experience.

Forbes published an article on February 28, 2019, that declared the top 15 US cities for 
blockchain technology jobs. The article is brief, but the list of cities is interesting. For more 
information, see:

https://www.forbes.com/sites/jeffkauflin/2018/02/26/the-  top-  15-   
cities-  for-  blockchain-  technology-  jobs-  in-  america/#542098fb4ac5

Blockchain Market Expertise Expansion
The market for blockchain expertise is expanding in select US cities, including New York, 
Atlanta, Boston, Washington DC, Austin, and the Bay Area. Overseas cities such as Toronto, 
Singapore, London, and Seoul are also seeing high demand. However, the majority of the 
demand for blockchain expertise is not just in major cities; I am seeing a significant number of 
startups in smaller cities as well.

The great part of searching for a blockchain role is that you may not actually need to be in a 
“tech hub” to get a blockchain role now. These roles may have a significant travel component or 
a working remotely possibility.



354 | CHAPTER 12 Blockchain Marketplace outlook

I can certainly vouch that developers would likely clear incomes over $200,000 in the major 
tech hubs in the United States. There are some interesting blockchain demand that has been 
documented by both the media and analyst research organizations.

To find out what the possibilities are, go to LinkedIn and perform a search. When I searched 
for blockchain in a few various cities or countries, I got the following:

United States: 4,693 results

United Kingdom: 1,416 results

Singapore: 341 results

Toronto: 115 results

Worldwide: 14,537 results

To be clear, these results are for any role that includes blockchain in either the job title, job 
description, requirements, responsibilities, or skill.

What does this mean? Well, it’s basically showing that roles are requiring some knowledge of 
blockchain. Typically, the roles will have blockchain as a requirement for a developer but more of 
a nice-to-have for a marketing expert, sales engineer, or account executive.

Basically, you should be considering blockchain as a skill down the road to your areas of 
improvement. Get yourself enabled either through training funded by your company or through 
your own funding. There are numerous organizations out there to help get you enabled. Once 
you have completed your training, then perhaps get certified to validate your skills. Employers 
are always looking at certifications. I know, because they pay me to train their employees for 
blockchain certifications.

Blockchain Certifications
Blockchain certifications are in high demand from both a student perspective and from an 
enterprise perspective. Companies are providing opportunities for employees to get enabled on 
blockchain technologies and for that matter spending thousands to enable their employees.

Blockchain certifications are evolving and, to be fair, in my opinion, not totally mature from a 
perspective of how other technologies are such as cloud computing or Linux, for example. Also, 
many organizations have been pumping out blockchain certifications that are poorly written and 
nothing more than someone overseas taking advantage of being first to market. I have taken 
many courses and certifications, most of which provide no real value at least from an accredita-
tion perspective.

Training materials, exams, and objectives need to be updated routinely with a defined team 
that is tasked with that responsibility. Utilizing best practices such as Bloom’s taxonomy, a 
commonly used educational industry framework, is required for a professional training organi-
zation to ensure the objectives of the training and certification are employed. When it comes to 
teaching or certification exams, the framework is broken down into six major categories: 
Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation.

It is clear that early blockchain certifications that were first to market did not follow the Bloom 
taxonomy best practices due to the lack of coherent structure and proper objectives. However, I 
have seen great improvement from several organizations, and these are the ones I am including 
in this chapter. There is a dearth of blockchain certifications and training companies in the 
blockchain training and certification game now.



Blockchain certifications | 355

Your enterprise needs to invest in the most current and accredited training programs. The 
following are the certification and training leaders in blockchain technology:

 ◆ Blockchain Institute of Technology (BIT)

 ◆ Blockchain Council

 ◆ Blockchain Training Alliance (BTA)

The two most prominent blockchain vender certifications are from R3 Corda and the Linux 
Foundation.

Lastly, it is also important to note that numerous colleges now offer blockchain certificates, 
albeit at a much higher cost and time investment.

Blockchain Institute of Technology
The Blockchain Institute of Technology is a training and education provider in blockchain 
technology and cryptocurrency. BIT partners with organizations and individuals to address their 
unique needs, providing training and education options that help professionals reach their goals.

The Blockchain Institute of Technology has historically been focused on training enterprises 
for cryptocurrency adoption and for two industry-pioneering certifications.

 ◆ The Certified Blockchain Professional (CBCP) certification was designed for professionals 
currently working in blockchain, Bitcoin, and cryptocurrency roles. The certification 
serves candidates who want to understand and work with blockchain technologies, level 
up their professional skills, and certify their level of competency and expertise.

 ◆ The Certified Senior Blockchain Professional (CSBCP) is the highest level of blockchain 
business certification offered by the Blockchain Institute of Technology. The CSBCP 
certification is available only to current CBCP certificate holders who have developed 
senior levels of blockchain knowledge and professional expertise.

For more information on the Blockchain Institute of Technology certifications, visit:
https://blockchaininstituteoftechnology.com/certifications

Blockchain Council
The Blockchain Council is an online group of blockchain experts that have put together a wide 
portfolio of blockchain training and certifications. With more than 1,500 members, the Blockchain 
Council is a private de facto organization working individually and proliferating blockchain 
technology globally. With more than 20 online certifications, the Blockchain Council is the most 
prolific content creator.

I generally recommend the Blockchain Council because of the cost of its content and exams. 
Most online (nonproctored) exams cost $129. The certifications do not have the same level of 
enterprise acceptance as the Blockchain Institute of Technology or the Blockchain Training 
Alliance exams because the Blockchain Council exams are taken online without proctors. 
However, I recommend them because they are a valuable certification route for those on a 
limited budget.

The Blockchain Council certifications are much more technical than the exams from 
Blockchain Institute of Technology or the Blockchain Training Alliance.



356 | CHAPTER 12 Blockchain Marketplace outlook

The following certifications have the most acceptance in the industry:

 ◆ A Certified Blockchain Expert (CBE) is a technical professional who understands block-
chain technology. They can build blockchain-based applications for businesses and have 
passed exhaustive training, as well as an exam-based blockchain certification aiming to 
impart in-depth practical knowledge in blockchain technology.

 ◆ A Certified Blockchain Architect (CBA) is a technical professional who understands 
blockchain projects and can guide them to fruition. They can also craft the guidelines and 
structure of the whole blockchain system, considering the requirement of the system.

 ◆ A Certified Blockchain Developer (CBD) is a technical professional who understands 
blockchain technology and can build blockchain-based applications for businesses. The 
CBD undergoes exhaustive training and must pass an exam-based program for blockchain 
developers.

For more information on their training and certification, visit https://www 
.blockchain-  council.org/blockchain-  certification/

Blockchain Training Alliance
The Blockchain Training Alliance, an organization based out of Southern California, caters 
primarily to enterprise organizations. The BTA has a worldwide training network of training 
delivery partners.

The BTA has a small portfolio of certifications—five, at the time of writing. The following are 
the three most important BTA certifications:

 ◆ Certified Blockchain Business Foundations (CBBF) is geared toward nontechnical workers 
to demonstrate their knowledge and skills in the blockchain. The exam focuses on the use 
cases, high-level terminology, and blockchain basics and why an organization should or 
should not use blockchain.

 ◆ Certified Blockchain Solution Architect (CBSA) is a route for both technical and nontechni-
cal audiences to demonstrate their knowledge and skills in the blockchain architecture. 
The exam focuses on architecting blockchain solutions, working with blockchain engi-
neers and technical leaders, and choosing appropriate blockchain solutions.

 ◆ Certified Blockchain Developer – Ethereum (CBDE) is a route to demonstrate your 
knowledge and skills in the basic development of Ethereum blockchains. Unlike the CBBF 
and the CBSA, the CBDE exam is designed for more of a targeted audience that includes 
software engineers, programmers, developers, and application architects. The exam 
focuses on preparing production-ready applications for the Ethereum blockchain; writing, 
testing, and deploying secure Solidity smart contracts; and understanding and working 
with Ethereum.

The BTA exams are proctored at a Pearson testing center, and each exam costs $300, with the 
exception of the CBBF certification, which costs $250. Each exam asks 70 questions, requires a 
passing score of 70 percent, and allots candidates 90 minutes to complete.

For presales professionals, I recommend the Certified Blockchain Solutions Architect from the 
Blockchain Training Alliance. The main reason I recommend this certification is general content 
scope of the exam and how the exam validates basic blockchain fundamentals and blockchain 
architecture that are focused on presales engineering.



suMMary | 357

Hiring managers looking for a certified developer or architect should feel confident that the 
candidate actually passed the exam on merit and not an open book online.

For more information on the BTA’s training and certification, visit https:// 
blockchaintrainingalliance.com/.

R3 Corda
R3 Corda has its own developer certification, called the Corda Developer Certification Exam. 
This technical (and difficult) exam is administered a bit differently, as it uses an open- 
book format.

Being Corda Certified demonstrates that you have technical expertise in developing distrib-
uted Corda applications. Developers who take the exam are expected to have extensive knowl-
edge of the Corda-related technical features and functions, such as states, contracts, transactions, 
flows, Corda nodes, and Corda networks. The exam contains 70 multiple choice questions and 
costs $150.

For more information on Corda training and certification, visit:
https://corda-certification.myshopify.com/products/corda-standard- 

certification-test

The Linux Foundation
The Linux Foundation has been well known for managing open source projects. It is also well 
known for its content and certification exams, and blockchain is no exception. It has a great 
certification that is technical and is hosted and valid by these leaders in open source training and 
certification.

The Linux Foundation’s Certified Hyperledger Fabric Administrator (CHFA) is really the 
“star” of the Hyperledger certifications. The CHFA is a technical certification around 
Hyperledger Fabric. The exam challenges candidates to demonstrate their ability to build a 
secure Hyperledger Fabric network for commercial deployment, including the ability to install, 
configure, operate, manage, and troubleshoot the nodes on that network. This exam is an online, 
proctored, performance-based test that consists of a set of performance-based items and is 
different in the sense that there are actual problems to be solved at a command line. You cannot 
fake your knowledge on this easily. If your prospective hire has this certification, then you know 
they are very technically adept at Hyperledger Fabric.

For more information on the Linux Foundation’s training and certification, visit:
https://training.linuxfoundation.org/certification/certified-hyperledger- 

fabric-administrator-chfa/

Summary
Whether you’re an enterprise architect, a solutions engineer, or a marketing specialist, there are 
opportunities for you to update your career skills or employment situation. Obtaining blockchain 
knowledge is becoming a requirement for a number of roles, as shown on LinkedIn.

The roles that are being advertised are ever-increasing with expanding blockchain companies 
but also IT vendors, VARS, and consulting organizations. Blockchain is clearly a growing market 
that is providing more organizations as well as IT professionals great career opportunities.



358 | CHAPTER 12 Blockchain Marketplace outlook

The adoption of blockchain technologies is expanding, What was once thought unrealistic 
could very well be attainable from a technological perspective for emerging technologies such as 
Hashgraph or DAGS. The ever-increasing number of emerging technologies are also providing 
blockchain opportunities.

Numerous blockchain certifications are available. Obtaining a certification should provide 
some career recognition or even new opportunities for a sales-driven engineering professional.

I certainly hope you can take full advantage of the market and career opportunities 
that abound.



Index

51 percent attacks, 335–336

A
acceptance drivers, 352–353
ACLs (access control lists), 40–41
acyclic (DAGs), 132
administrator, 140
adoption challenges, 159
algorithms, consensus algorithm, 20
AMI (Amazon Machine Image), 200–201
AML (anti-money-laundering), 258
AMQP (Advanced Message Queuing 

Protocol), 46, 47
AP (available and partition tolerant), CAP 

theorem, 12
append, 15
application architecture 

domain, TOGAF, 82
architects, 140

presales engineer, 140
solutions architect, 140

attacks
51 percent attacks, 335–336
DDOS (distributed denial-of-service) 

attacks, 336–337
eclipse attacks, 337
hijacking attacks, 337
insider attacks, 338
phishing attacks, 336
reply attacks, 338
routing attacks, 339
sybil attacks, 339

authentication
CIA triad, 324
two-factor, 332

authenticity, 16
availability

CAP theorem, 12
design for, 87

AWS (Amazon Web Services), 187. See also 
AWS Managed Blockchain; AWS 
Management Console

availability zones, 189–191
Blockchain templates (See Blockchain 

templates)
CloudFormation, 190–191
EC2 (Elastic Compute Cloud), 199–207
Hyperledger CloudFormation 

template, 191–221
IAM (Identity and Access 

Management), 208–216
regions, 189–191
security groups, 195–199
VPC subnet, 192–194

AWS Managed Blockchain, 187
chaincode, 230–231
channels, 230–231
deploying, 221–231
network, 222–230
templates, 188

AWS Management Console, 192–194

B
B2B (business to business), 163
B2C (business to consumer), 163
BaaS (blockchain as a service), 6, 90, 151

AWS and, 187–231
overview, 183–187

Basel II, 262
best practices

Architecting Enterprise Blockchain Solutions, First Edition. Joseph Holbrook.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.



360 | BFT (BYZANTINE FAULT TOLERANCE) • ChAINs

high-level, 325
software development, 325–326
wallets, 326–327

BFT (Byzantine Fault Tolerance), 121
BGP (Byzantine Generals Problem), 7
BIT (Blockchain Institute of 

Technology), 355
Bitcoin

blockchain comparison, 4
innovations, 5–6
release date, 8

blockchain. See also enterprise blockchain
Bitcoin comparison, 4
components, 79–80
definition, 2–3

business audience, 3–4, 5
legal audience, 5
technical audience, 3, 5

history, 5–8
hybrid, 21–23, 26–27, 30–31
merits, 242–244
origins, 2
permissioned, 24–26, 27
permissionless, 27
private, 21–23, 24–26

compared to public, 26
properties, 259
public, 21–23, 23–24

compared to private, 26
release dates, 8
structure, 77–79
versus traditional databases, 9–10

CAP theorem, 12–13
consensus and, 10
ledgers versus traditional 

databases, 10–12
Blockchain Council, 355–356
Blockchain templates, 189

CloudFormation, 190–191
deploying, 216–221

blocks, 20–21, 80
BNA (business network archive), 41
Brewer, Eric, 12
Brewer’s theorem, 12–13
BTA (Blockchain Training 

Alliance), 356–357
business architecture domain, TOGAF, 82
business models, ecommerce, 163–164
bytecodes, 61

C
C2C (consumer to consumer), 163
CA (certificate authority), 91, 331
CA (consistent and available), CAP 

theorem, 12
Cakeshop, 58
CAP theorem, 12–13
CAPEX (capital expenditure) model, 

166–167, 179
Casper, 60
CBA (Certified Blockchain Architect),  

356
CBD (Certified Blockchain Developer), 356
CBE (Certified Blockchain Expert), 356
centralized networks, 7–8
certifications, 354–355

BIT (Blockchain Institute of 
Technology), 355

Blockchain Council, 355–356
BTA (Blockchain Training 

Alliance), 356–357
CBA (Certified Blockchain 

Architect), 356
CBD (Certified Blockchain 

Developer), 356
CBE (Certified Blockchain Expert), 356
Linux Foundation, 357
R3 Corda, 357

chaincode, Hyperledger Fabric, 41
chains, 80



ChALLENgEs TO AdOpTION • COsT EFFICIENCIEs | 361

challenges to adoption, 159
charity, use cases, 255
CIA triad, 324–325

authentication, 324
confidentiality, 324
integrity, 324

client nodes, 40, 94
cloud computing, 6

community cloud, 22
deployment models, 21
hybrid cloud, 22
private cloud, 22
public cloud, 22
service models, 21

cloud spend, 179
cloud storage, use cases, 255
community cloud, 22
competency readiness, 161–162
compliance, 71, 257–258

benefits, 258
design for, 89–90
requirements, 261

Composer Playground, 41, 42
confidentiality, CIA triad, 324
connection requests, 336
consensus, 20, 80, 117–118

Corda, 48
notary, 48–49

Hyperledger Fabric, 38
methods, 118–119, 121–122, 134

BFT (Byzantine Fault Tolerance), 121
Byzantine Generals 

Problems, 119–121
DAGs (directed acyclic 

graphs), 132–133
dBFT (delegated Byzantine fault 

tolerance), 129–130
DPoS (delegated proof of stake), 128
IBFT (Istanbul Byzantine fault 

tolerance), 130–131

PBFT (practical Byzantine fault 
tolerance), 130

PoET (proof of elapsed 
time), 126–127

Raft, 131–132
PoS (proof of stake), 124–125, 125–126
PoW (proof-of-work), 122–124, 125–126
Quorum, 54, 56, 112
R3 Corda, 101
trust and, 10

consensus algorithm, 20
consistency

CAP theorem, 12
design for, 87
eventual consistence, 13
state machine replication, 13

consortium enterprise blockchains, 30
international trade and, 97–98

consortiums, 6
Constellation, 54–55, 346
contracts, smart contracts, 4
Corda. See also R3 Corda

CorDapps, 43
definitions, 45–46
DemoBench, 52
smart contracts, 43

Corda Enterprise, 45
CorDapps, 43
cost

data storage, 169–170
data transfer, 170–171
development, 172–173
implementation, 172
infrastructure, 168–169
legal, 171–172

cost efficiencies
CAPEX and, 179
costless verification, 179
intermediary roles, 179–181
labor cost reduction, 177–178



362 | COsT mOdELs • dEvELOpmENT

OPEX and, 179
transaction cost, 179

cost models, 173–174
ROI (return on investment), 174–176
TCO (total cost of ownership), 176–177

costless verification, 179
CouchDB, 91
CP (consistent partitioned), CAP 

theorem, 12
CR (create and read only), 12
cross-border payments, 245–247
CRUD (create, read, update, delete), 12
cryptocurrencies, 2, 5
cryptography

ECC (Elliptic Curve 
Cryptography), 328

hashing functions, 328–329

D
DAGs (directed acyclic graphs), 132–133
dapp (distributed application), 9, 60, 65

Ethereum, 286–287
data architecture domain, TOGAF, 82
data storage costs, 169–170
data structures, 78
data transfer, costs, 170–171
databases

CR, 12
CRUD, 12
Hyperledger Fabric, 95–96
versus ledgers, 10–12
legacy architecture, 10

dBFT (delegated Byzantine fault 
tolerance), 129–130

DDOS (distributed denial-of-service) 
attacks, 336–337

decentralization, 6, 23
design and, 83

decentralized networks, 7–8
decision checklists, 76

decision trees, 75–76
decision workflow, 156
DemoBench, 52
demos, sales cycle and, 147–149

vendor tools, 149
whiteboarding, 149

deployment models, 90
cloud computing, 21

design, 85–86
for availability, 87
for compliance, 89–90
for consistency, 87
decentralization, 83
deployment model, 90
Ethereum, 105
for integrity (immutability), 86
networks, 84
peer-to-peer networks, 83
for performance, 89
security, 83
for security and privacy, 87–89
transactions, 84
for trust, 89
workflow, 72

development
costs, 172–173
Ethereum

APIs, 297–299
dapps, 286–287
ecosystem, 288–291
EVM (Ethereum Virtual 

Machine), 288
gas, 287–288
networks, 291–295
nodes, 295–296
smart contracts, 284–286
Solidarity programming 

language, 296–297
testing, 299–303

Quorum, 315–316



dIgITAL AssET, hYpERLEdgER FABRIC • EThEREUm | 363

R3 Corda, 310–311
client RPC, 313
consensus model, 311
CorDapp, 311–312
DemoBench, 313–314
doorman, 313
flows, 313
network, 312
nodes, 312
oracles, 313
service hub, 312

Digital Asset, Hyperledger Fabric, 36
distributed code network, 7, 11
distributed ledger, 3
distribution of trust, 10–12
DNS hijacking attacks, 337
DoD (Department of Defense), 81
DPA (Data Protection Act 2018), 262
DPoS (delegated proof of stake), 128
Drizzle, 301

E
EC2 (Elastic Compute Cloud), 199–207
ECC (Elliptic Curve Cryptography),  

328
eclipse attacks, 337
ecommerce business models, 163–164
economics, 163
edges (DAGs), 132
EEA (Enterprise Ethereum Alliance), 58, 

68, 104–105
stack, 105–106

EIP (Ethereum Improvement 
Proposals), 303

encryption, 328–329
enterprise blockchain, 8–9, 24–26, 29–30

business challenges, 84
comparing, 31
consensus, 117–118
consortium, 30

design, 85–86
requirements, 86–90

hybrid, 30–31
legal challenges, 84
private, 30
sales cycle, 137–139
technology challenges, 84

EOA (externally owned account), 64
EPS (earnings per share) ratio, 179
Equifax hack, 88
ERC (Ethereum request for 

comments), 303
ERC-20 token, 303
ERC20 standard, 61
Eth, 67
Ethereum, 9, 58

APIs, 297–299
Remix, 297–298
Vyper, 298
Web3-eth, 298–299

architecture examples, 107–109
Casper, 60
client apps, 63
corporate finance scenario, 107
dapps, 286–287

MetaMask, 284
Mist, 284

definitions, 59
design, 105
development, 284–303
diploma issuance scenario, 107–109
ecosystem, 288–291
ERC (Ethereum request for 

comments), 303
Ether units, 289
Ethereum Studio, 284
Ethereum Wallet, 284
Etherstats.io and, 9
EVM (Ethereum Virtual 

Machine), 287–288



364 | EThEREUm ExpLORER • FIsmA (FEdERAL INFORmATION sECURITY mANAgEmENT ACT)

faucets
MetaMask, 292–293
Rinkeby, 293–295

gas, 287–288
Geth, 284
Go-Ethereum (GETH), 284
governance, 68
IPFS, 284
JSON-RPC, 62
ledger, 9, 61
localhost, 284
networks, 291–295
nodes, 295–296
Olympic network, 58
overview, 60
Parity, 284
peer-to-peer networks, 58
public network, 59
versus Quorum, 54
release date, 8
security, 341

development, 342
enhancements, 342–343
Hyperledger Chaincode 

Scanner, 343–344
Hyperledger Fabric, 343, 344
mainnet testing, 341–342
testnets, 341–342

selling points, 104–105
smart contracts, 58, 64–66,  

284–285
enforcement, 285–286
workflow, 285

Solidarity browser, 284
Solidarity programming 

language, 296–297
Solidity, 63, 296–297
testing, 299–303

Drizzle, 301
Ganache, 300–301

Open Zeppelin, 302
performance testing, 319
private testing, 301–302
testnets, 299–300
Truffle, 300
Truffle Suite, 300
Truffle vs Ganache, 301–302

Testnets, 284
TestRPC, 284
tokens, 61
tools, 66–68
transactions, 11, 64

private, 106–107
scaling, 107

utilities, 66–68
wallets, 66

Ethereum Explorer, 9
eventual consistence, 13
EVM (Ethereum virtual machine), 9, 

61, 287–288
Hyperledger Burrow and, 35

expertise
demand, 353
expansion, 353–354

F
Fabric framework, 32
Facebook, Libra project, 165
fail-stop fault, 13
farm-to-table use case, 251
faults, fail-stop, 13
financial sector

compliance, 275–277
use cases, 244–245

cross-border payments, 245–247
customers, 247–248
peer-to-peer lending, 248
security tokenization, 248–249

FISMA (Federal Information Security 
Management Act), 268–269



FUNdINg • hYpERLEdgER FABRIC | 365

funding, 166–173
fundraising, use cases, 255

G
G2B (government to business), 163
G2C (government to consumer), 163
Ganache, 300–301
gas (Ethereum), 287–288
gateways, 321
GCR (governance, compliance, 

risk), 257–258
compliance benefits, 258
compliance requirements, 261–265
financial sector, 271–275
KYC compliance, 265–271
regulatory requirements, 259–261
smart contracts, 271–275

GDPR (Global Data Protection 
Regulation), 71, 89–90, 258, 263

genesis block, 79
Geth, 67, 291
Gilbert, Seth, 12
Go-Ethereum (Geth), 61, 284
governance, 257–258
government use cases

Dubai, 252
Georgia (country), 252–253

Gramm-Leach-Bliley Act, 264
GRC (Governance, Risk, Compliance),  

71
greenhouse strategy, 32, 33
GSA (General Services Agency), 145
Guthrie, Brett, 5

H
hash pointers, 78
hashes, 78
hashing functions, 328, 329–330
hashing lists, 78

genesis block, 79

health care privacy, 96–97
healthcare use cases, 253–254
high-level best practices, 325
hijacking attacks, 337
HIPPA (Health Insurance Portability and 

Accountability Act), 96, 258, 264–265
Howey test, 249, 259–260
HSM (Hardware Security Module), 92
HTLC (hash timed locks), 321
hybrid blockchain, 26–27
hybrid cloud, 22
hybrid enterprise blockchains, 30–31
Hyperledger, 31–32, 303–310

Blockchain Platform 
Extension, 304–305

blockchains in, 34
chaincode, 303–304
client applications, 306–307
CloudFormation template, 191–221
Composer, 307–308

modeling language, 308
Playground, 309–310
resources, 308–309

frameworks, 32
greenhouse strategy, 32, 33
release date, 8
service discovery, 307

Hyperledger Burrow, 35
Hyperledger Composer, 41–42
Hyperledger Fabric, 30, 34, 35, 90–91

business networks, 40–41
chaincode, 41
consensus, 38, 305
consortium for international trade 

scenario, 97–98
database options, 305–306
databases, 95–96
definitions, 37
design, 91
development tools, 41–42



366 | hYpERLEdgER INdY • KYC (KNOW YOUR CUsTOmER) UsE CAsE

governance, 43
HSM (Hardware Security Module), 92
ledger, 37–38
membership, 91
modularity, 92
nodes, 40

client, 94
ordered, 94
peer, 94

organizations, 93–94
performance, 91

testing, 319–320
PKI (Public Key Infrastructure), 96
privacy, 94–95

health care, 96–97
queries, 92
reference architecture, 92–93
REST services, 307
selling points, 91
smart contracts, 41
Template, deploying, 216–221
transactions, 38–40

world state, 41
trust, 91

Hyperledger Indy, 32–33
Hyperledger Iroha, 34
Hyperledger Reference Architecture, 92–93
Hyperledger Sawtooth, 35

I
IaaS (infrastructure as a service), 187
IBFT (Istanbul Byzantine fault 

tolerance), 130–131
IBM Cloud Blockchain platforms, 231–232

cluster, linking, 236–238
deploying, 232–236
resource creation, 238–239

ICOs (initial coin offerings), 61, 259

identity management, use cases,  
255–256

IEEE requirements, 153–154
immutability, 9

design for, 86
implementation costs, 172
indexes, 78
infrastructure cost, 168–169
insider attacks, 338
integration, 320–321

data exchange models, 321
gateways, 321
HTLC (hash timed lock), 321
relays, 321

integrity, CIA triad, 324
interoperability, 320–321

data exchange models, 321
gateways, 321
HTLC (hash timed lock), 321
relays, 321

IoT (Internet of Things), 250
IPFS (Interplanetary File System), 30
ISO 27001, 267–268
Istanbul Byzantine fault tolerance, 54

Quorum, 56

J
Jaxx, 66
JSON-RPC, Ethereum, 62

K
keys

private, 17
public, 17

KYC (know your customer) use case, 
57, 247–248

compliance, 265–267
Quorum, 113–114



LEdgER • OsN (ORdERINg sERvICE NOdE) | 367

L
ledger, 3

Ethereum ledger, 9, 61
Hyperledger Fabric, 37–38
notebook comparison, 4
Quorum, 56, 112
R3 Corda, 100
versus traditional databases, 10–12

legal costs, 171–172
legal counsel, 140
LevelDB, 91
Libra project, 165
linked lists, 77
Linux Foundation

certification, 357
Hyperledger project (See Hyperledger)

logistics use cases, 249
farm-to-table, 251
IoT (Internet of Things), 250
supply chain and, 250

Lynch, Nancy, 12

M
market growth, 352
market patents, 350
marketer, 141
marketplace outlook, 349–357
Matsui, Doris, 5
Medicalchain, 253
Merkle trees, 78, 79
Metamask, 66, 67
MetaMask, 289–290
miners, 80
mining, 13

PoW (proof-of-work), 60
Mist Browser Wallet, 66, 291
MSP (membership services provider), 91

mutable objects, 9
MyEtherwallet, 66

N
Nakamoto, Satoshi, 2, 23
NAPR (National Agency of Public 

Registry), 252
networks, 7–8

design, 84
distributed, 11
Ethereum, 291–292
membership, 88

NIST (National Institute of Science and 
Technology), 22

nodes, 80
Ethereum, 295–296
faults, 13
Hyperledger Fabric

client nodes, 40
ordered nodes, 40
peer nodes, 40

nonce, 78
nonrepudiation, 329
NoSQL databases, 10
notaries, Corda, 48–49

O
Olympic network, Ethereum, 58
on-chain scaling, 107
Open Zeppelin, 302
operator, 140
OPEX (operational expense) model, 

166–167, 179
opportunities, qualifying, 155
ordered nodes, 40, 94
organization, Hyperledger Fabric, 93–94
OSN (ordering service node), 92



368 | pAAs (pLATFORm As A sERvICE) • QUORUm 

P
PaaS (platform as a service), 187
Parity, 67, 291
partition tolerance, CAP theorem, 12
payment gateways, 164–165, 321
PBFT (practical Byzantine fault 

tolerance), 130
PCI-DSS (Payment Card Industry Data 

Security Standard), 271
peer nodes, 40, 94
peer-to-peer networks

design and, 83
Ethereum, 58

performance, 316–318
design for, 89
permission performance, 318
permissionless performance, 318
testing

Ethereum tools, 319
Hyperledger Fabric tools, 319–320

permissioned blockchains, 24–26, 27
permissionless blockchains, 27

properties, 13–15
permissions, 331–332
phishing attacks, 336
PII (personally identifying 

information), 260–261
PKI (Public Key Infrastructure), 17, 96
POC (proof of concepts), 150–151, 253
PoET (proof of elapsed time), 35, 126–127
pointers, 77
PoS (proof of stake), 118
PoW (proof-of-work), 13, 118

mining, 60
presales engineer (architect), 140
principles of blockchain, 15

trust, 16–17
trustless, 16, 17–18

privacy

design for, 87–89
health care, 96–97

Privacy Act 1988 (Australia), 261
private blockchains, 24–26
private cloud, 22
private enterprise blockchains, 30
private keys, 17
procurement activities, 144
programming languages, 279

C#, 282
C++, 281
Golang (Go), 281
Java, 282–283
JavaScript, 282
platforms, 283–284
Python, 282
Rust, 283
Simplicity, 283
Solidity, 280

project manager, 141
protocols, 30
public blockchains, 23–24
public cloud, 22
public keys, 17

Q
QLDB (Quantum Ledger Database), 187
qualifying opportunities, 155
Quorum, 30, 54

architecture examples, 113–114
Cakeshop, 58, 315–316
consensus, 54, 56, 112
Constellation and, 54–55, 111, 346
Constellation Enclave, 112
definitions, 55
design principles, 111
development, 315–316
versus Ethereum, 54
governance, 58



QUORUm ChAIN • sALEs CYCLE | 369

interbank transfer, 113
KYC (know your customer), 113–114
ledger, 56, 112
Node, 111
overview, 55–56
security, 345–347
selling points, 109–111
smart contracts, 56–57
Transaction Manager, 112
transactions, 55, 56, 113
Truffle, 57

Quorum Chain, 56, 346

R
R3 Corda, 30, 43–46

advantages, 99
architecture examples, 102–103
certification, 357
client applications, 50
client RPC, 313
consensus, 48, 101

notary, 48–49
consensus model, 311
CorDapp, 311–312
cross-border payments, 102–103
DemoBench, 52, 313–314
design, 98–99
development, 310–314
development tools, 52–53
doorman, 313
flows, 313
governance, 53
insurance consortium scenario, 103–104
key concepts, 100–101
ledger, 47–48, 100
network, 46–47, 312
nodes, 49, 312
oracles, 313
privacy, 99

release date, 8
security

enhancements, 345
notary, 344–345
smart contracts, 345

selling points, 98
service hub, 312
shared facts, 49–50
smart contracts, 51–52, 99
states, 49–50
transactions, 50, 101–102

Raft, 131–132
Raft-based consensus, 54
readiness assessment workshops, 147
records, 78
regulatory requirements, 259–261
relays, 321
replication, state machine replication, 13
reply attacks, 338
REST (Representational State Transfer), 42
Ripple, 246
risk, 257–258

assessment, 332–333
mitigation, 333–335

risk management, 84–85
ROI (return on investment), 174–176
roles, stakeholders, 139–141
routing attacks, 339
RSK (Rootstock), 321
RTGS (real-time gross settlement 

system), 246

S
sales cycle, 137–139

BaaS (blockchain as a service), 151
demos, 147–149

vendor tools, 149
whiteboarding, 149

IT-based, 141–143



370 | sALEs ENgINEERINg • sQL dATABAsEs

presales tasks, 143
RFPs (request for 

proposals), 144–146
POC (proof of concepts), 150–151
readiness assessment workshops, 147
stakeholders, 146

sales engineering
best practices, 160–161
job requirements/

responsibilities, 159–160
SDK (software development kits), 42
SEC (Securities and Exchange 

Commission), 259–260
security

assumptions, 328
authentication, two-factor, 332
certificates, 330

CA (certificate authority), 331
management, 330–331
standards, 330–331

cryptography, 328–329
design, 83
design for, 87–89
Ethereum, 341

development, 342
enhancements, 342–343
Hyperledger Chaincode 

Scanner, 343–344
Hyperledger Fabric, 343, 344
mainnet testing, 341–342
testnets, 341–342

membership, 331–332
overview, 323–324
permissions, 331–332
Quorum, 345–347
R3 Corda

enhancements, 345
notary, 344–345
smart contracts, 345

smart contracts, 339–340
threat landscape

51 percent attacks, 335–336
DDOS (distributed denial-of-

service) attacks, 336–337
eclipse attacks, 337
hijacking attacks, 337
insider attacks, 338
phishing attacks, 336
reply attacks, 338
routing attacks, 339
sybil attacks, 339

security audits, 327–328
service models, cloud computing, 21
sidechains, 321
SIP (Secure Identity Platform), 256
smart contracts, 4, 80, 157–159

adaptability, 273–274
Corda, 43
Ethereum, 58, 64–66, 284–285

enforcement, 285–286
workflow, 285

Hyperledger Fabric, 41
legal concerns, 271–273, 274
liabilities, 274
Quorum, 56–57
R3 Corda, 99
security, 339–340

social impact, use cases, 255
software development best 

practices, 325–326
Solidity, 63, 296–297
solutions

architecting, 71–76
selling, 152–154

solutions architect, 140
Sovrin Foundation, 32–33
SOX (Sarbanes-Oxley Act of 2002), 258, 268
SQL databases, 10



ssI (sELF-sOvEREIgN IdENTITY) NETWORK • TRUsTLEss BLOCKChAINs | 371

SSI (self-sovereign identity) network, 32
stablecoins, 165–166
stakeholders, 72–73, 139–141

sales cycle, 146
state machine replication, 13
success areas, 70–71
supply chain, use cases, 250
SWIFT banking system, 5
sybil attacks, 339

T
TAFIM (Technical Architecture 

Framework for Information 
Management), 81–82

TCO (total cost of ownership), 176–177
technology architecture 

domain, TOGAF, 82
technology investments, 349–352
testing

Ethereum
Drizzle, 301
Ganache, 300–301
Open Zeppelin, 302
private testing, 301–302
testnets, 299–300
Truffle, 300
Truffle Suite, 300
Truffle vs Ganache, 301–302

performance
Ethereum tools, 319
Hyperledger Fabric tools, 319–320

threat landscape
51 percent attacks, 335–336
DDOS (distributed denial-of-service) 

attacks, 336–337
eclipse attacks, 337
hijacking attacks, 337
insider attacks, 338
phishing attacks, 336

reply attacks, 338
routing attacks, 339
sybil attacks, 339

timestamps, 78
TOGAF (Open Group Architecture 

Framework), 81
application architecture domain, 82
business architecture domain, 82
data architecture domain, 82
technology architecture domain, 82

tokenization, 105
security tokenization, 248–249

tokens
ERC20 standard, 61
Ethereum, 61, 302

TPC (cost per transaction), 164
TPS (transactions per second), 10, 79
trainer, 141
transactions, 4, 80

blocks, 20–21
consensus, 20
design, 84
Ethereum, 64

private, 106–107
scaling, 107

Hyperledger Fabric, 38–40
world state, 41

Hyperledger Fabric ledger, 37–38
Quorum, 55, 56, 113
R3 Corda, 101–102

transparency, 18–19
Truffle, 58, 300
Truffle Suite, 300
trust, 15, 16–17

consensus and, 10
design for, 89
distribution, 10–12

TrustChain, 250
trustless blockchains, 17–18



372 | TWO-FACTOR AUThENTICATION • ZsL (ZERO-KNOWLEdgE sECURITY LAYER)

two-factor authentication, 332
two-way pegs, 321

U
UE (user experience), 87
use cases

charity, 255
cloud storage, 255
financial sector, 244–245

cross-border payments, 245–247
customers, 247–248
peer-to-peer lending, 248
security tokenization, 248–249

fundraising, 255
government

Dubai, 252
Georgia (country), 252–253

healthcare, 253–254
identity management, 255–256
logistics, 249

farm-to-table, 251
IoT (Internet of Things), 250
supply chain and, 250

perspectives, 74
pillars, 73
potential, 72

social impact, 255
successful, 156–157
ZKPs (zero-knowledge 

proofs), 254–255

V
validity, 16
validity rules, 80
value creation, 157–159, 164
VAR (value-added reseller), 1

W
wallets

best practices, 326–327
Ethereum, 66

webs (DAGs), 132
Wood, Gavin, 23
workflow

decision workflow, 156
design workflow, 72

X–Y–Z
ZKPs (zero-knowledge proofs), 113

use cases, 254–255
ZSL (zero-knowledge security layer), 58


